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Simple mathematical models with very
complicated dynamics
Robert M. May* 

First-order difference equations arise in many contexts in the biological, economic and social sciences.
Such equations, even though  simple and deterministic, can exhibit a surprising array of dynamical
behaviour, from stable points, to a bifurcating  hierarchy of stable cycles, to apparentfy random
fluctuations. There are consequently many fascinating problems, some concerned with delicate
mathematical aspects of the fine structure of the trajectories, and some concerned with the practical
implications  a n d  applications. This  is an interpretive review of them.
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THERE are  many  situations, in many disciplines,  which can be
described, at  least  to a crude first approximation, by a simple
first-order difference equation. Studies of the dynamical
properties of such models usually  consist of finding constant
equilibrium solutions, and then conducting a linearised  analysis
to determine their stability with respect to small disturbances:
explicitly nonlinear dynamical features are usually not
considered.
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Recent studies have, however, shown that the very simplest
nonlinear  difference equations can  possess an extraordinarily
rich spectrum of dynamical behavidur, from stable points,
through cascades  of stable cycles, to a regime in which the
behaviour (although fully deterministic) is in many respects
“chaotic”, or indistinguishable from the sample function of a
random process.

This review article has several aims.
First, although the main features of these nonlinear phen-

omena have been discovered and independently rediscovered by
several people, I know of no source where all the main results
are collected together. I have therefore tried to give such a
synoptic account. This is done in a brief and descriptive way.
and includes some new material:  the detailed mathematical
proofs are to be found in the technical literature, to which
signposts are given.
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Second, I indicate some of the interesting mathematical
questions which do not seem to be fully resolved. Some of these
problems are of a practical kind, to do with providing a prob-
abilistic description for trajectories which seem random, even
though their underlying structure is deterministic. Other
problems are of intrinsic mathematical interest, and treat such
things as the pathology of the bifurcation  structure, or the truly
random behaviour that can  arise when the nonlinear  function
F(.Y)ofequ3tion  (I) is not analytical.  One aim  here is to stimulate
research  on these  questions, particularly  on the empirical
questions which relate  to processing data. 

Third,  consideration  is given to some fields where these
notions may find practical  application.  Such applications range
from the abstractly metamorphical (where, for example, the
transition from a stable  point to "chaos"  serves as a  metaphor
for the  onset of turbulence in a fluid), to models for the dynamic
behaviour  of biological  populations (where one can  seek to use 
field or laboratory  data  to estimate  the values  of the  parameters
in the  difference  equation).

Fourth, there is a very brief review of the literature pertaining
to the way this spectrum of behaviour-stable points, stable
cycles, chaos-can arise in second or higher order difference
equations (that is, two or more dimensions; two or more
interacting species), where the onset of chaos usually requires
less severe nonlinearities. Differential equations are also
surveyed in this light; it seems that a three-dimensional system
of first-order  ordinary differential equations is required for the
manifestation of chaotic behaviour.

The review ends with an evangelical plea for the introduction
of these difference equations into elementary mathematics
courses, so that students’ intuition may be enriched by seeing
the wild things that simple nonlinear equations can do.

First-order difference equations
One of the simplest systems an ecologist can study is a season-
ally breeding population in which generations do not overlap’+.
Many natural populations, particularly among temperate zone
insects (including many economically important crop and
orchard pests), are of this kind. In this situation, the observa-
tional data will usually consist of information about the
maximum,  or the average, or the total population in each
generation. The theoretician seeks to understand how the
magnitude of the population in generation r+l, X,+,, is
related to the magnitude of the population in the preceding
generation  1. X,: such a relationship may be expressed in the
general form

XI,, G FW,) (1)

The function F(.Y) will usually be what a biologist calls “density
dependent”, and a mathematician  calls nonlinear; equation (I) is
then a first-order. nonlinear  difference  equation.

Although I shall henceforth adopt  the habit  of referring to the
variable X as “the population”, there are  countless situations
outside  population biology where the  basic equntion (1),
applies. There are  other examples in biology, as  for example
in senetic+”  (where the  equation describes the change in gene
frequency in time) or in e p i d e  (with X the fraction  of
the  population infected at time t). Examples  in economics
include models for the relationship  between commodity
quantity  and price8, for the theory of business cyclcs3.  and  for
the temporal  sequences  generated  by various other economic
qu:tntitics’“.  The  general  equation  (1)   also  is germane  to the

        



learning (where  Xmay  be the number of bits of information that
can be remembered after an interval I),  or in the propagation of
rumours in variously structured societies (where X is the
number oi people to have heard the rumour  after time I).  The
imaginative reader will be able to invent other contexts for
equation (1).

In many of these contexts, and for biological populations in
particular. there is a tendency for the variable X to increase
from one generation to the next when it is small, and for it to
decrease when it is large. That is, the nonlinear function F(X)
often has the following properties: F(O)=O;  F(X)  increases
monotonically as X  increases through the range Oc X-C A
(with F(X) attaining its maximum value at X=.4);  and F(X)
decreases monotonically as X increases beyond X=A. More-
over, F(X) will usually contain one or more parameters which
“tune” the severity of this nonlinear behaviour: parameters
which tune the steepness of the hump in the F(X) curve. These
parameters will typically have some biological or economic or
sociological significance.

A specific example is afforded by the equationt*‘*LZ-aJ

N ,+, = N,(u--A’,) (2)

This is sometimes called the “logistic” difference equation, In
the limit b=O,  it describes a population growing purely expon-
entially (for u>  I); for bi0,  the quadratic nonlinearity pro-
duces a growth curve with a  hump, the steepness of which is
tuned by the parameter u. By writing X=bN/o,  the equation may
be brought into canonical form’*‘*l*+

x,,, = ax1  (1  -X,) (3)

In this form, which is illustrated in Fig. 1, it is arguably the
simplest nonlinear d i f fe rence equation. I shall use equation (3)
for most of the numerical examples and illustrations in this

. article. Although attractive to mathematicians by virtue of its
extreme simplicity, in practical applications equation (3) has the
disadvantage that it requires X to remain on the interval
O< X<  I ; if X ever exceeds unity, subsequent  iterations diverge
towards --43 (which means the population becomes extinct).
Furthermore, F(X) in equation (3) attains a maximum value of

.u/4  (at X=f);  the equation therefore possesses non-trivial
dynamical behaviour only if u<4.  On the other hand, all
trajectories are attracted to X=0 if UC I. Thus for non-trivial

Fig. 1 A typical form for the relationship between  X,,,  and X,
described by equation t I ). The  curves are for equation  (3),  with
u = 2.707 (u): and u =  3.414 (h).  The dashed lines indicate the
slope at the “fixed points” where  F(X)  intersects the 45” line:
for the case R this slope is less steep than -45’  and the fixed
point is stable; f’0r.b  the  slope is steeper  than -45”,  and the

point is unstable.
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dynamical behaviour we require I <ocJ;  failing this, the
population becomes extinct.

Another example, with a  more secure provenance in the
biological literaturel*zJ-z:,  is the equation

,
I

x ,+, =  X,  expb-iI -X,)1 (4) 

This again describes a population with a propensity to simple
exponential growth at low densities. and a  tendency to decrease
at high densities. The steepness of this nonlinear behaviour is
tuned by the parameter r. The model is plausible for a single
species population which is regulated by an epidemic disease at
high density
complicated

*‘. The function F(X) ofequation (4) is slightly more
than that of equation (3),  but has thecompensating

advantage that local  stability implies global stability’ for all
x>o.

The forms (3) and (4) by no means  exhaust the list of single-
humped functions F(X) for equation (I) which can be culled
from the ecological literature. A fairly full such catalogue  is
ginve, complete with references,  by May and  Other similar
mathematical functions are given by Metropolis er al.‘a.  Yet

I

other forms for F(X) are discussed under the  heading of
“mathematical curiosities” below.

Dynamic properties of equation (1)
Possible constant, equilibrium values  (or “fixed points”) of X  in
equation (1) may be found algebraically  by putting X,+,=X,=
X*,  and solving the resulting equation

.r*  = F(P) (5)

An equivalent graphical method is to find the points where the
I

curve F(X) that maps X, into X,,,  intersects the 45” line,
Xr+,=XCr  which corresponds to the ideal nirvana of zero

‘population growth; see Fig. 1. For the single-hump curves
discussed above. and exemplified  by equations (3) and (4),  there
are two such points: the trivial solution X=0,  and  a  non-trivial
solution X*  (which for equation (3) is X’*  = I -[I/o]). /

The next question concerns the stability of the equilibrium
point X*.  This can be scen~“““s-*‘***c  to depend  on the slope
of the F(X) curve at X’.  This slope, which is illustrated by the
dashed lines in Fig. 1, can be designated

,

i
~(‘)(X’,  = [dF/dX]x  zx*

So long as this slope lies between 45”  and -4s” (that is, It*)
between + 1 and - 1).  making an  acute angle with the 45”  ZPG
line, the equilibrium point X*  will be at  least locally stable,
attracting all trajectories in its neighbourhood. In equation (3),
for example, this slope is X (“=2-a: the equilibrium point is
therefore stable, and attracts all  trajectories originating in the
interval 0~  XC I, if and only if I <0,<3.

As the relevant parameters are tuned SO that the curve F(X)
becomes more and  more steeply humped, this stability-deter-
mining slope at X*  may eventually steepen beyond -45” (that is,
X(l)<  -I), whereupon the equilibrium point X*  is no longer
stable.

What happens next? What happens,  for example, for a>  3 in
equation (3)? I

To answer  this question, it is helpful to look at the map  which
relates the populations at successive intervals 2 generations
apart;  that is, to look at the function which relates  X,+*  to X,.
This second  iterate of equation (I) cnn be written

x,+*  = F[F(.Y,)] (7)  

or, introducing an obvious piece of notation,

A-,,,  = F’“(S,) . (8)

The map  so derived  from equation (3)  is illustrated  in Figs 2 and 3 .
Population values  which recur every  second  generation  (that
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Fig. 2 The map relating X, +? to X,, obtained by two iterations of
equation (3). This tigure is for the case  (~1)  of Fig. I,, o = 2.707:
the basic fixed  point is stable, and it is the only point  at which
Fe*‘(X)  intersects the 45” line (where its slope, shown by the

dashed line, is less steep  than 45’).

is, fixed points with period 2) may now be written as X*?, and
found either algebraically from

x** 3 P(X’,)
or graphically from the intersection between the map F(*)(X)
and the 45” line, as shown in Figs 2 and 3. Clearly the equi-
librium point X* of equation (5) is a solution of equation (9);
the basic fixed  point of period I is a degenerate case of a period
2 solution. We now make a simple, but crucial, observatiorQ:
the slope of the curve F(?)(X)  at the point Xc, defined as
)ctz’(X*)  and illustrated by the dashed lines in Figs 2 and 3, is
the square of the corresponding slope of F(X)

Ayx’) = [AyX*)]’ (10)

This fact can  now be used to make plain what happens when the
fixed point X* becomes unstable. If the slope of F(X) is less than
-45” (that is, Iho’/ < 1), as illustrated by curve a in Fig. 1,
then-I’* is stable. Also, from equation  (10), this implies 0<  71(*)-z 1
corresponding to the slope of Ft?’ at X* lying between 0” and
45”.  as shown in Fig. 2. As long as the fixed point X* is stable, it
provides the only non-trivial solution to equation (9).  On the
other hand, when k(t) steepens beyond -45” (that is,
IX(t)! > I), as illustrated by curve b in Fig 1, X* becomes
unstable. At the same time, from equation (IO) this implies
k(l)>  I, corresponding to the slope of F(?)  at X+ steepening
beyond 45”,  as shown in Fig. 3. As this happens, the curve
Ft’J (X) must develop a “loop”, and two new fixed points of
period 2 appear, as illustrated in Fig. 3.

As the parameter increases beyond the critical value, at first
all these cycles have even periods, with X, alternating up and
down between values above, and values below, the fixed point
X*. Although these cycles may in fact be very complicated
(having a non-degenerate period of, say, 5,726 points before
repeating), they will seem to the casual observer to be rather like
a somewhat “noisy” cycle of period 2. AS the parameter value
continues to increase, there comes a stage (at a=3.6786 . . for
equation (3)) at which the first odd period cycle appears. At
first these odd cycles have very long periods, but as the para-
meter value continues to increase cycles with smaller and
smaller odd periods are picked up, until at last the three-point

Fig. 3 As for Fig. 2, except that here u = 3.414, as in Fig. lb.
The basic fixed point is now unstable: the slope of F(*$I’) at
this point steepens beyond 45’. leading to the appearance of

two new solutions of period 2.

In short, as the nonlinear function f(X) in equation (I)
becomes more steeply humped, the basic tixed point X* may
become unstable. At exactly the stage when  this occurs, there

1.0

N
are born two new and initially stable fixed points of period 2,
between which the system alternates  in a stable cycle of period 2,

z 0 . 5
*
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towards 2.=-l as the hump in F(X) continues to steepen.
Beyond this point the period 2 points will in turn become un-
stable, and bifurcate to  give an initially stable cycle of period 4.
This in turn gives way  to  a cycle  of period 8, and thence to a
hierarchy of bifurcating stable cycles of periods 16, 32, 64, . . .,
2”. In each case. the way in which a stable cycle of period  k

becomes unstable, simultaneously bifurcating to produce a new
and initially stable cycle of  period Zk, is basically similar to the
process just adumbrated for k = 1. A more full and rigorous
account of the material covered so far is in ref. 1. 

This “very beautiful bifurcation phenomenon”22 is depicted
in Fig. 4, for the example equation (3). It cannot be too strongly 
emphasised that the process is generic to most functions F(X)
with a hump of tunable steepness. Metropolis et al.*@ refer to
this hierarchy of cycles of  periods 2” as the harmonics of (he
fixed point X*.

Although this process produces an infinite sequence of cycles
with periods 2” (H-*‘~c).  the “window” of parameter values
wherein any one cycle is stable progressively diminishes, so that
the entire process is a convergent one, being bounded above by
some critical parameter value. (This is true for most, but not
all, functions F(X): see equation (17) below.) This critical
parameter value is a point of accumulation of period 2” cycles.
For equation (3) it is denoted u,: 0,=3.5700..  .

Beyond this point of accumulation (for example, for II> (I~ in
equation (3)) there are an infinite number of tixed points with
different periodicitics, and an infinite number of different
periodic cycles. There are also an uncountable number of initial
points X,, which give totally aperiodic (although bounded)
trajectories; no matter how long the time series generated by
F(X) is run out, the pattern never repeats. These facts may be
established by a variety of methods’*‘~*O**a**‘.  Such a situation,
where an infinite number of different orbits can occur, has been

christened “chaotic” by Li and Yorke*“.

The sort of graphical analysis indicated by Figs I, 2 and 3, along
with the equation (IO). is all that is needed to establish this
generic result**‘.

As before, the stability of this period  2 cycle depends  on the
slope of the curve F(“(.\‘)  at t h e  2 points. (This slope is easily
shown to be the same at both pointsL.z”. and more  generally to
be the same at all k points on a period /i cycle.) Furthermore,  as
is clear by imagining the intermediate  stages  between Figs 2 and 3

3, this stability-determining slope has  the value  ). = 1.  I at the
birth of  the 2-point cycle, and then decreases through zero     
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Fig. 4 This figure illustrates some of the stable (-) and
unstable (- - - -) fixed points of various periods that can
arise by bifurcation processes in equation (1) in general, and
equarion (3) in particular.  To the  left, the basic stable fixed point
becomes unstable and gives rise by a succession of pitchfork
bifurcations to stable harmonics of period 2”; none of these
cycles is stable  beyond (I = 3.5700. To the right, the two period
3 cycles appear by tangent bifurcation: one is initially unstable;
the other is initially stable. but becomes unstable and gives way
to stable harmonics of period 3 x 2”.  which have a point of
accumulation at a = 3.8495. Note the change in scale on the
a axis, needed to put both examples on the same figure. There
are infinitely  many other such windows, based on cycles of

higher periods.

cycle appears (at a=3.8284  . . for equation (3)). Beyond this
point, there  are cycles with every integer period, as well as an
uncountable number of asymptotically aperiodic trajectories:
Li and Yorkc+‘entitle  their original proof of this result “Period
Three Implies Chaos”.

The term “chaos” evokes  an image of dynamical trajectories
which are indistinguishable from some stochastic process.
Numerical simulations12*15*2**2~*Z5  of the dynamics of equation
(3),  (4) and other similar equations tend to confirm this impres-
sion. But, for smooth and “sensible” functions F(X) such as in
equations  (3) and (4). the underlying mathematical fact is that
for any specified parameter  value there is one unique cycle that
is stable, and that attracts essentially all initial point+** (see
ref. 4, appendix A, for a simple and lucid exposition). That is,
there is one cycle that “owns” almost all initial points; the
remaining infinite number  of other cycles,  along  with the
asymptotically aperiodic trajectories, own a set of points which.
although uncountable, have measure zero.

As is made clear  by Tables 3 and 4 below, any one particular
stable cycle  is  likely  to occupy an extraordinarily narrow
window of parameter values.  This fact, coupled with the long
time  it is likely  to take for transients associated with the initial

conditions to damp out. means  that in practice the unique
cycle is unlikely to be unmasked. and that a stochastic descrip-
tion of the dynamics is likely to be appropriate. in spite of the
underlying deterministic structure. This point is pursued further
under the heading  “practical applications”, below.

 The main messages of  this section arc summariscd in Table
I, which sets out the various domains of dynamical behaviour  
of the equations (3) and (4) as functions of the parameters, (I
and I respectively, that determine the severity of the nonlinear
response. These properties can be understood  qualitatively in a
graphical way, and are generic to any well behaved F(.Y)  in
equation (1).

We now proceed to a more detailed discussion of the mathe-
matical structure of the chaotic regime for analytical functions.
and then to the practical problems  alluded to above and to a
consideration of the behavioursl peculiaritics exhibited by non-
analytical functions (such as those in the two right hand columns
of Table I).

Fine structure of the chaotic regime
We have seen how the original fixed point g  bifurcates to give
harmonics of period 2”. But how do new cycles  of period k
arise?

The general process is illustrated in Fig. 5,  which shows how
period 3 cycles originate. By an obvious extension of the
notation introduced in equation (8),  populations three  genera-
tions apart are related by

Yd t*3 = F”‘( Xc) ( I I )

If the hump in F(X) is sufficiently steep, the threefold  iteration
will produce a function Fc3’(S)  with 4 humps, as shown in
Fig. 5 for the F(X) of equation (3). At first (for N < 3.8254 . . in
equation 3) the 45’ line intersects  this curve only at the single
point X* (and at X=0). as shown by the solid curve in Fig. 5.
As the hump in F(X) steepens,  the hills and valleys  in Ff3’(.Y)
become more pronounced, until simultaneously the first  two 
valleyssink and the final  hill rises to touch the 45‘ line. and then
to intercept it at 6 new points, as shown by the dashed curve in
Fig. 5. These 6 points divide into two distinct three-point cycles.
As can be made plausible by imagining the intermediate stages
in Fig. 5, it can be shown that the stability-determining slope of
Fcal(X)  at three of these points has a common value, which is
X(J)=+ I at their birth, and thereafter  steepens beyond + I :
this period 3 cycle is never stable. The slope of f”‘(X) at the
other three points begins at AtJ’=f  I, and then decreases
towards zero, resulting in a stable cycle of period 3. As f(X)
continues to steepen, the slope )L13’ for this intially stable
three-point cycle decreases beyond - I ; the cycle becomes
unstable, and gives rise by the bifurcation process discussed in
the previous section to stable cycles of period 6, 12, 24. . . .,
3~2”.  This birth of a stable and unstable pair of period 3
cycles, and the subsequent harmonics which arise as the
initially stable cycle becomes unstable. are illustrated to the right
of Fig. 4.

Table I Summary of  the way  various “single-hump” functions F(,Y), from equation (I ). behave in the chaotic region,  distinguishing the dynamical
properties which are generic from those which are not

The  function F(.Y)
of equation  ( I )

a.Y;  if .\‘<  t i.X: if .Y<  1
uX( I -X) ,Yexp[rCI  --X)1 dl  - .Y);  if .Vr 1 X.\‘l-D: if .\‘>  I

Tunable  parameter a r ” h
Fixed  point  becomes  unstable
"Chatoic"  region  begins

3.0000 2.0000 l.OiMO’ 2.0000

(point OF accumulation  of cycles of period  ?) 3.5700
Fir odd-period  cycle appears 3.6786
Cycle  with period  3 appears

[and therefore  every  integer  period  present] 3.8284
"Chatoic"  region  ends 4.mt
Are there  stable  cycles in the  chaotic  region? Yrs

?? Below this (( value,  ,i  0 is stable
t All  solutions  are  attracted  t o - T for  11  values  beyond  this.

2.69’4 I .0000 2.0000
2.8332 1.4142 2.6180

3.1024 1.6180 3.0000
+
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Table  2 Catalogue  of the number of periodic points, and of the various  cycles  (with periods k = 1 up to II), arising from equation  (I) with a
single-humped function F(X)

k I 2 3 4 5 6 7

Possible  total number of  points with period k 2 4 8 16 32 64 128
Possible total number of points  with non-degenerate

period li 2 2 6 12 30 54 126
Total number of cycles of period k. including those which

are degenerate  and/or  harmonicsand ‘or never locally stable 2 3 4 6 8 14 20
Total  number of non-degenerate cycles (including harmonics

and unstable  cycles) 2 I 2 3 6 9 IS
Total  number of non-degenerate,  stable cycles (including

harmonics) I I 1 2 3 5 9
Total number  of non-degenerate,  stable cycles whose basic

period is I; (that is, excluding harmonics) 1 - 1 13 4 9

There are, therefore, two basic kinds of bifurcation pro-

cesses’*’ for first order  difference  equations. Truly new cycles oi
period k arise in pairs (one stable. one unstable) as the hills  and
valleys  of higher iterates of F(X) move. respectively,  up and
down to intercept  the 45’ line, as typified by Fig. 5. Such cycles
are born at the moment when the hills and valleys become
tangent to the 45’  line, and the initial slope of the curve F”)
at the points is thus h (” = - I : this type of bifurcation may be
called’*’  a tangent bifurcation or a ji.=--  I bifurcation. Con-
versely, an originally stable cycle of period LI may become
unstable as F(X) stcepcns. This happens when the slope of F(‘)
at thcsc period k points steepens beyond L(*)=  - I, whereupon
a new and initially stable cycle of period 2k is born in the way
typified  by Figs 2 and 3. This type of bifurcation may be
called a pitchfork bifurcation (borrowing an image from the
left hand side of Fig. 4) or a h= - I bifurcation’.‘.

Putting all this together, we conclude that as the parameters
in F(X) are varied the fundamental,  stable dynamical units are
cycles of basic period k, which arise by tangent bifurcation,
along with their  associated cascade of harmonics of periods
k2”,  which arise by pitchfork bifurcation. On this basis, the
constant equilibrium solution X* and the subsequent hierarchy
of stable cycles of periods 2”IS merely a special case, albeit a
conspicuously important one (namely  k= 1), of a general
phenomenon. In addition, remcmber’~1~zz*‘9  that for sensible,
analytical functions (such as,  for example. those in equations

‘li’,egrf  (3) and (4))  there is a unique stable cycle for each value of the
parameter in F(X). The entire range of parameter values

<a< 4 in equation (3),  0~ r in equation (4)) may  thus be

: ut the
regarded as made up of infinitely  many windows of parameter

:crcssCS
\s F(X)

Fig. 5 The relationship between A’,.,  and A’,.  obtained by three

s t a b l e
iterations  of equation (3). The solid curve is for a = 3.7, and
only intersects  the 45’  line once. As n increases. the hills and

~cconies valleys become  more  pronounced. The dashed curve  is  for

.issed in o = 3.9, and six  new  period 3 points  have appeared (arranged
, as  two c y c l e s  each of period 3).
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values-some large, some unimaginably small-each c o r r e s -
ponding to a single one of these basic dynamical units. Tables 3
and 4, below, illustrate this notion. These windows are  divided

from each other by points (the points of accumulation of the
harmonics of period k2”) at which the system is truly chaotic,
with no attractive cycle: although there are infinitely many such
special parameter values, they have measure zero on the
interval of all values.

How are these various cycles arranged along  the interval of
relevant parameter values? This question has to my knowledge
been answered independently by at least 6 groups of people,
who have seen the problem in the context of combinatorial
theory’“*3U, numerical analysis’3.*‘,  population biology’, and
dynamical systems theoryzz*3L  (broadly defined).

A simple-minded approach (which has the advantage of
requiring little technical apparatus, and the disadvantage of
being rather clumsy) consists of first answering the question,
how many period k points can there be? That is, how many
distinct solutions can there be to the equation

X’, = Fk’(X’ ,)? (12)
If the function F(X) is sufficiently  steeply humped, as it will be
once the parameter values are sufficiently  large,  each successive
iteration doubles the number of humps, so that F’“(X) has
2 k-*  humps.  For large enough parameter  values, all these hills
and valleys will intersect the 45” line, producing 2 Ir fixed points
of period k. These are listed for k 4 12 in the top row of Table 2.
Such 3 list includes degenerate points of period k, whose period
is a submultiple of k; in particular, the two period 1 points
(X=0 and X*) are degenerate solutions of equation (12) for all
k. By working from left to right across Table 2, these degenerate
points can be subtracted out, to leave the total number of non-
degenerate points of basic period k, as listed in the second row
of Table 2. More sophisticated ways of arriving at this result
are given elsewhere15.1’.1E.z?.‘o.~1.

For example, there eventually are 2E=64  points with period

6. These include the two points of period 1, the period 2
“harmonic” cycle, and the stable and unstable pair of triplets of
points with period 3, for a total of 10 points whose basic  period
is a submultiple of 6; this leaves 54 points whose basic period is
6.

The 2’ period k points are arranged into various cycles of
period k. or submultiples thereof. which appear in succession
by either tangent or pitchfork bifurcation as the parameters in
F(X) are varied. The third row in Table 2 catalogues  the total
number of distinct cycles of period k which so appear. In the
fourth row”,  the degenerate cycles are subtracted out, to give
the total  number  of non-Jcgencrntc cycles of period k: these
numbers must equal those of the second row divided by k.
This fourth row includes the (stable) harmonics which arise by
pitchfork bifurcation, and the pairs of stable-unstable cycles
arising by tangent  bifurcation.  By subtracting out the cycles
which  are unstable from birth. the total number of possible
stable cycles is given  in row five; thcsc figures can also be
obtained  by less pedestrian  tllettlo~is’J”B.J”.  Finally we may
subtract  out the stable cycles which  arise by pitchfork bifurca-
t ion,  as harmonics  o f  some simpler  cycle,  t o  arrive at the  final



Table 3 A catalogue of the stable cycles (with  basic periods up t o 6) for rhc equation .\‘,-,  : ti.\.,(I - .\‘,)

Period of
basic cycle

:

4
5(a)
5(b)
5(c)
6(a)
6(b)
6(c)
6(d)

a value at which:

Basic cycle Basic cycle
first appears becomes  unstable

::i% 3.8415  3.0000

3.9ZOl 3.9608
3 . 7 3 5 2 3.7411
3 . 9 0 5 6 3.9061

3.99030
;:;f;;” 3 . 6 3 0 4
3.937516 3.937596
3.977760 3.977784
3.997583 . 3.997585

Subsequent  cascade
of “harmonics” w i t h

period kZ”  all
become  unstable

3.3495  3.5700

3 . 9 6 1 2
3.7430
3 . 9 0 6 5
3 . 9 9 0 3 2
3 . 6 3 2 7
3 . 9 3 7 6 4 9
3.977800
3.997556

Width oi the  range
of ‘I values  over

which the basic cycle,
or onr of its harmonics.

i s attractive

2 . 5 7 0 0
0.0211
0.001 I
0 . 0 0 4 8
0.0009
0.00006
0.0062
0 . 0 0 0 1 3 3
0 .000040
0.000003

row in Table 2, which lists the number of stable cycles whose
basic period is k.

Returning to the example of period 6. we have already noted
the five degenerate cycles whose periods are submultiples of 6.
The remaining 54 points are parcelled out into one cycle of
period 6 which arises as the harmonic of the only stable three-
point cycle, and four distinct pairs of period 6 cycles (that is,
four initially stable ones and four unstable ones) which arise by
successive tangent bifurcations. Thus, reading from the foot of
the column for period 6 in Table 2, we get the numbers 4, 5. 9,
14.

Using various labelling  tricks, or techniques from combina-
torial theory, it is also possible to give a generic list of the order
in which the various cycles appear1*t3-16.2?.  For example, the
basic stable cycles of periods 3, 5, 6 (of which there are respect-
ively 1, 3, 4) must appear in the order 6, 5, 3, 5, 6, 6. 5, 6:
compare Tables 3 and 4. Metropolis ef al.*” give the explicit such
generic list for all cycles of period k G I I.

, As a corollary it follows that, given the most recent cycle to
appear, it is possible (at least in principle) to catalogue all the
cycles  which have appeared up to this point. An especially
elegant way of doing this is given by Smale and Williams”,
who show, for example, that when the stable cycle of period 3
first originates, the total number of other points with periods
k, N,,  which have appeared by this stage satisfy the Fibonacci
series. N,=2, 4, 5, 8, 12, 19, 30, 48, 77, 124, 200. 323 for
k-1,2,..., 12: this is to be contrasted with the total number of
points of period k which will eventually appear (the top row of
Table 2) as F(X) continues to steepen,

Such catalogues  of the total number of fixed points, and of
their order of appearance, are relatively easy to construct. For
any particular function F(X), the numerical task of finding the
windows of parameter values  wherein any one cycle or its
harmonics is stable is. in contrast, relatively tedious and
inelegant.  Before giving such results, two critical parameter
values of special significance should be mentioned.

Hoppcnsteadt and Hyman”’ have given a simple graphical
method for locating the parameter value  in the chaotic regime
at which the first odd period  cycle appears. Their analytic
recipe  is as follows. Let a be the parameter which tunes the
steepness of F(X) (for example, a=n  for equation (3),  a=r for
equation (4)). X*(U) be the fixed point of period 1 (the non-
trivial solution of equation (5)),  and S,,,..(a)  the maximum
value attainable from iterations of equation (I) (that is, the
value of F(X) at its hump or stationary point). The  first odd
period  cycle appears  for that value of a which satistiCs”*“t

x*(u)  =  F~“(,Y,..~(U))  (13)

As mentioned  above  another critical value is that where the
 period  3 cycle  first appears. This  parameter  value  may be found

numerically from the solutions  Of the third iterate  of  equation
(I ): for equation  (3) it is” o= I -.. 1 S.

values, but only the single, value at which a given cycle is
maximally stable: that is, the value of u for which the stability-
determining slope of F”‘(X) is zero, ?.(‘r=O.  Since the slope
of the k-times iterated map F t ‘) at any point on a period k cycle
is simply equal to the product of the slopes of F(X) at each of
the points X* L.  on this cycle1*8*20,  the requirement ktk)=O
implies that X=A (the  stationary point of F(X), where I.nr=O)
is one of the periodic points in question, which considerably
simpliiies the numerical calculations.

For each basic cycle of period k (as catalogued  in the last
row of Table 2). it is more interesting to know the parameter
values at which: (I) the cycle first  appears (by tangent bifurca-
tion); (2) the basic cycle becomes unstable (giving rise by suc-
cessive pitchfork bifurcations to a cascade of harmonics of
periods k2”);  (3) all the harmonics become unstable (the point
of accumulation of the period kZ”  cycles). Tables 3 and 4 extend
the work of May and Ostert,  to give this numerical information
for equations (3) and (4). respectively. (The points of
accumulation are not ground out mindlessly, but are calculated
by a rapidly convergent iterative procedure,  see ref. 1, appendix
A.) Some of these results have also been obtained by
Gumowski and hlira’*.

Practical  p r o b l e m s
Referring to the paradigmatic example of equation (3),  we can
now see that the parameter interval 1 <a<4 is made up of a
one-dimensional mosaic of infinitely many windows of u-values,
in each of which a unique cycle of period k, or one of its
harmonics, attracts essential ly all init ial points. Of these
windows. that for 1 <a< 3.5700 . . corresponding to k=l and
its harmonics is by far the widest and most conspicuous. Beyond
the first point of accumulation, it can be seen from Table 3 that
these windows are narrow, even for c y c l e s  of quite low periods,
and the windows rapidly become very tiny as k increases.

As a result, there  develops a dichotomy between the under-
lying mathematical behaviour (which is exactly determinable)
and the “commonsense” conclusions that one would draw from
numerical simulations. If the parameter Q is held constant at one
value in the chaotic region, and equation (3) iterated for an
arbitrarily large number of generations, a density plot of the
observed values of X, on the interval 0 to I will settle into k
equal spikes (more precisely, delta functions! corresponding to
the k points on the stable cycle appropriate to this u-value. But
for most a-values this cycle will have a fairly large period, and
moreover it will typically take many thousands of generations
before  the transients associated with  the initial conditions are
damped  out: thus the density  plot produced by numerical
simulations usually  looks  like a sample of points taken from
some continuous distribution.

An especially  intersting  set of numerical  computations are
due t o  I Hoppensteadt  (personal  c o m m u n i c a t i o n )  who has
combined  many  iterations  to produce a density plot of ,\‘,  for
each o n e of a s e q u e n c e  Of cl-valUCs,  gradually increasing from
3.5x10  .  . IO 4. These results are displayed as a movie.  As can
be expected  from  Table  3, some of the more conspicuous  cycles
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do show up as sets of delta functions: the 3-cycle  and its first
few harmonics; the first S-cycle: the first 6-cycle.  But for most
values of a the density plot looks like the sample function of a
random process. This is particularly true in the neighbourhood
of the a-value where the first odd cycle  appears (a=3.6786  . .),
and again in the neighbourhood of a=J:  this is not surprising,
because each of these locations is a point of accumulation of
points  of accumulation. Despite the underlying discontinuous
changes in the periodicities of the stable cycles, the observed
density pattern tends to vary smoothly. For example, as a
increases toward the value at which the 3-cycle appears, the
density plot tends to concentrate around three points. and it
smoothly diffuses away from these three points after the 3-cycle
and all its harmonics become unstable.

Non-analytical functions F(X) in which the hump is in  fact  a

spike provide an interesting special case. Here  we may imagine
spikey hills and valleys moving to intercept the 45’  line in  Fig. 5,
and it may be that both the cycles born by tangent bifurcation
are unstable from the outset (one having i(Q>  1, the other
I.(*)< --I),  for all L> 1. There are then no stable cycles in the
chaotic regime, which is therefore literally chaotic with a
continuous and truly ergodic density distribution function.

One simple example is provided by

X,+1 = ax,;  if X, <: + (14)
X,,,  =u(l-X,);if.Y,>f

I think the most interesting mathematical problem lies in
designing a way to construct some approximate and “effectively
continuous” density spectrum. despite the fact that the exact
density function is determinable and is always a set of delta
functions. Perhaps such techniques have already been devel-
oped in ergodic theorya  (which lies at the foundations of
statistical mechanics). as for example in the use of "coarse-
grained  observers”. I do not know.

defined on the interval 0 < X-C  1. For 0 < u < 1, all trajectories
are attracted to X=0;  for 1 <UC  2, there are infinitely many
periodic orbits, along with an uncountable number of aperiodic
trajectories, none of which are locally stable. The first odd
period cycle appears at 0=42,  and all integer periods are
represented beyond o=(l  f d/5)/2.  Kac30  has given a careful
discussion of the case u=2.  Another example, this time with an
extensive biological pedigree’+,  is the equation

Such an effectively stochastic description of the dynamical
properties of equation (4)  for large r has been providedC8,  albeit
by tactical tricks peculiar to that equation rather than by any
general method. As r increases beyond about 3, the trajectories
generated by this equation are. to an increasingly good approxi-
mation, almost periodic with period (I/r) exp(r-  1).

The opinion I am airing in this section is that although the
exquisite fine structure of the chaotic regime is mathematically
fascinating, it is irrelevant for most practical purposes. What
seems called for is some effectively stochastic description of the
deterministic dynamics. Whereas the various statements about
the different cycles and their order of appearance can be made
in generic fashion, such stochastic description of the actual
dynamics will be quite different for different F(X): witness the
difference between the behaviour of equation (4),  which for
large r is almost periodic "outbreaks" spaced  many generations

X ,*, =IX,;ifX,c:l (15)
X,+, = kX,1-b;  if X,  > I

If 1>  1 this possesses a globally stable equilibrium point for
6 < 2. For 6 > 2 there is again true chaos, with no stable cycles:
the first odd cycle appears at b=(3ft/5)/2,  and all integer
periods are present beyond b=3.  The dynamical properties of
equations (14)  and (15)  are summarised to the right of Table 2.

The absence of analyticity is a necessary, but not a sufficient,
condition for truly random behaviou?. Consider, for example,

x,+, = (u/2)X,; if X, c f
X,+,  = 0X,(1-X,)  ; if X8>+ (16)

This is the parabola of equation (3) and Fig. 1, but with the
left hand half of F(X) flattened into a straight line. This equation
does possess windows of a values, each with its own stable
cycle, as described generically above. The stability-determining
slopes 1’  *) vary, however, discontinuously  with the parameter a,
and the widths of the simpler stable regions are narrower than
for equation (3): the fixed point  becomes unstable at u=3; the
point of accumulation of the subsequent harmonics is at
a=3.27  . .; the first odd cycle appears at a-3.44 . .; the
3-point  cycle at  a=3.67.  . (compare the first column in Table 1).

These eccentricities of behaviour manifested by non-
analytical functions may be of interest for exploring formal
questions in ergodic theory. I think, however, that they have no
relevance to models in the biological and social sciences, where
functions such as F(X) should be analytical. This view is
elaborated elsewhere3’.

apart, versus the behaviour of equation (3)  which for u-+4 is
not very different from a series of Bernoulli coin flips.

we can Mathematical curiosities
:p of a As discussed above, the essential reason for the existence of a
values. succession of stable cycles throughout the “chaotic” regime is

: of its that as each new pair of cycles is born by tangent bifurcation
.. these  (see Fig. 5),  one of them is at first stable, by virtue of the way
-1  and the smoothly rounded hills and valleys intercept the 45” line.
Ieyond For analytical functions f(X), the only parameter values for
: 3 that which the density plot or “invariant measure” is continuous
criods, and truly ergodic are at the points of. accumulation of
:s.

harmonics, which divide one stable cycle from the next. Such
kinder- ’ exceptional parameter values have found applications, for
nable) ,example, in the use of equation (3) with a=4 as a random

v from number generator3’*35: it has a continuous density function
it one proportional to [X(1-Xx)]-’  in the interval O<  X-C  1.
‘3r  a n
~1’  the -
:nto  k
.ing to
;‘. But
I, and
.!llons
3s are
~CrlCi\l

As a hnai curiosity, consider the equation

x,+ , = XX,[l f x,1 -5 (17)

Table 4 Catalogue  of the stable cycles  (with basic  periods up to 6) for the equation ,I’,+,  = X,  CXP[~(~  - .v,)l

Period of
basic cycle

r value  at which :

Uasic  cycle
first appears

Basic  cycle
becomes unstable

Subsequent cascade
of “harmonics” with

period k?”  ul/
become  unstable

Width of the range
of r values over

with the basic cycle.
or one of its harmonics.

is attractive

4
5(UJ
5(ht
5fL.l
au,

3SY55
2.Ylhl
3.3632
S.‘)Oh
2.,71-I

3.6lj3
2.9’56
3.3hX?
3.9337
2.779Y

0.02Y8
0.0095
0.0050
0.0141
0.0075



Fig. 6 The solid lines demarcate the stability domains for the
density dependence parameter, p.  and the population growth
rate. k, in equation (17);  the dashed  line shows where 2-point
cycles give way to higher cycles of period 2”. The solid circles
come from analyses of life table data on field populations, and
the open circles from laboratory populations (from ref. 3,

after ref. 39).

This has been used to fit a considerable amount of data on
insect populations aB.aD. Its stability behaviour, as a function of
the two parameters λ and 0, is illustrated in Fig. 6. Notice that
for 7r.c  1.39 . . there is a globally stable equilibrium point for
allfi;for7.39. .<X<l2.50.. this fixed point becomes unstable
for sufficiently large p, bifurcating to a stable 2-point  cycle
which is the solution for all larger 0; as I.  increases through the
range 12.50 . .<1<14.77  .  . various other harmonics of
period 2” sppcor in turn. The hierarchy of bifurcating cycles of
period 2”  is thus truncated, and the point of accumulation and
subsequent regime of chaos is not achieved (even for arbitrarily
large 0)  until 1>  14.77 . . .

Applications
The fact that the simple and deterministic equation (1) can
possess dynamical trajectories which look like some sort of
random noise has disturbing practical implications. It means,
for example, that apparently erratic fluctuations in the census
data for an animal population need not necessarily betoken
either the vagaries of an unpredictable environment or sampling
errors: they may simply derive from a rigidly deterministic
population growth relationship such as equation (1). This point
is discussed more fully and carefully elsewhere’.

Alternatively. it may be observed that in the chaotic regime
arbitrarily close  initial conditions can lead to trajectories
which. after a sufficiently  long time, diverge widely. This means
that, even if we have a simple model in which all the parameters
are determined  exactly, long term prediction is nevertheless
impossible. In a meteorological context, Lorenz’s  has called
this general phenomenon the “butterfly effect”: even if the
atmosphere could be described by a deterministic model in
which a l l  parameters were known, the fluttering of a butterfly’s
wings could alter the initial conditions, and thus (in the chaotic
regime)  alter the long term prediction.

Fluid turbulence  provides a classic example where, as a
parameter (the Reynolds  number) is tuned in a set of deter-
ministic equations  (the  Navier-Stokes  equations), the motion
can undergo an abrupt transition from some stable  configura-
tion  (for example, laminar  flow) into an apparently stochastic,
chaotic regime. Various models  based  on the Navier-Stokes
differential  equations  have been  proposed as mathematical
metaphors for this process’s*“‘s”.  In a recent review o f  the
theory of turbulence,  hl;lrtin!’ has observed that the one-

dimensional difference  equation (1) may be useful  in this
context.  Compared with the earlier modcIs’5~“‘~“,  it has the
disadvantage of being even more abstractly metaphorical. and
the advantage of having a spectrum of dynamical behaviour
which is more richly complicated yet more amenable to
analytical investigation.

A more down-to-earth  application is possible in the use of
equation (I) to fit datal‘:*a+J~*lg*‘a  on biological populations
with discrete, non-overlapping generations. as is the case for
many temperate zone arthropods. Figure 6 shows the parameter
values k and fl that are estimatedJP  for 25 natural populations
and 4 laboratory populations when equation (17)  is fitted to the
available data. The figure also shows the theoretical stability
domains: a stable point; its stable harmonics (stable cycles of
period 2”); chaos. The natural populations tend to have stable
equilibrium point behaviour. The laboratory populations tend
to show oscillatory or chaotic behaviour; their behaviour may
be exaggeratedly nonlinear because of the absence, in a
laboratory setting, of many natural mortality factors. It is
perhaps suggestive that the most oscillatory natural population
(labelled A in Fig. 6) is the Colorado potato beetle, whose
present relationship with its host plant lacks an evolutionary
pedigree. These remarks are only tentative, and must be treated
with caution for several reasons. Two of the main caveats are
that there are technical difficulties in selecting and reducing the ,
data, and that there are no single species populations  in the 
natural world: to obtain a one-dimensional difference equation
by replacing a population’s interactions with its biological and
physical environment by passive parameters (such as h and p)
may do great violence to the reality.

Some of the many other areas where these ideas have found
applications were alluded to in the second section,  above+“.
One  aim of this review article is to provoke applications in yet
other fields.

Related phenomena in higher dimensions
Pairs of coupled, first-order difference  equations (equivalent to 
a single second-order equation) have been investigated in
several contexts’*“-‘a,  particularly in the study of temperate
zone arthropod prey-predator systemsZ-‘*23*J7.  In these two- 
dimensional systems, the complications in the dynamical
behaviour are further compounded by such facts as: (1) even
for analytical functions, there can be truly chaotic-behaviour
(as for equations (14)  and (15) ), corresponding  to so-called
“strange attractors”; and (2) two or more different  stable states
(for example, a stable point and a stable cycle of period 3) can
occur together for the same parameter values’. In addition, the
manifestation of these phenomena usually requires less severe
nonlinearities (less steeply humped F(X) ) than for the one-
dimensional case.

Similar systems of first-order ordinary differential equations,
or two coupled first-order differential equations, have much
simpler dynamical behaviour, made up of stable and unstable
points and limit cycles‘I. This is basically because in continuous
two-dimensional systems the inside and outside of closed curves
can be distinguished; dynamic trajectories cannot cross each
other. The situation becomes qualitatively more complicated,
and in many ways analogous to first-order difference equations, I
when one moves to systems of three or more coupled, first-order
ordinary differential equations (that is, three-dimensional 
systems of ordinary differential  equations). Scanlon (personal
communication) has argued that chaotic behaviour and
“strange attractors”, that is solutions which are neither points
nor periodic orbits”, are typical of such systems. Some well 
studied examples arise in models for reaction-diffusion  systems
in chemistry and biologyJP, and in the models of Lorcnz”
(three dimensions) and Ruelle  and Takcns’” (four dimensions)
referred to above. The analysis of these systems is. by virtue
of their higher dimensionality,  much less  transparent than for
equation  (I ).

An explicit  and rather surprising example of a  system which
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has recently been studied from this viewpoint is the ordinary
differential  equations used in ecology to describe competing
species. For one or two species these systems are very tame:
dynamic trajectories will converge on some stable equilibrium
point (which may represent coexistence, or one or both species
becoming extinct). As SmaleG” has recently shown, however,
for 3 or more species these general equations can. in a certain
reasonable and well-defined sense, be compatible with any
dynamical behaviour. Smale’s’” discussion is generic and
abstract: a specific  study oi the very peculiar dynamics which
can be exhibited by the familiar  Lotka-Volterra equations
once there are 3 competitors is given by May and Leonardsi.

Conclusion
In spite of the practical problems which remain to be solved, the
ideas developed in this review have obvious applications in
many areas.

The most important applications, however. may be
pedagogical.

The elegant body of mathematical theory pertaining to linear
systems (Fourier analysis. orthogonal functions. and so on),
and its successful application to many fundamentally linear
problems in the physical sciences. tends to dominate  even
moderately advanced University courses in mathematics and
theoretical physics. The mathematical intuition so developed
ill equips the student toconiront the bizarre bchaviour exhibited
by the simplest of discrete nonlinear systems. such as
equation (3). Yet such nonlinear systems are surely the rule,
not the exception. outside the physical sciences.

I would thereiore urge that people be introduced to. say,
equation (3) early in their mathematical education. This
equation can be studied phenomenologically  by iterating it on
a calculator. or even by hand. Its study does not involve as
much conceptual sophistication as does elementary calculus.
Such study would greatly enrich the student’s intuition about
nonlinear systems.

Not only in research. but also in the everyday world of
politics and economics. we would all be better off if more
people realised  that simple nonlinear systems do not necessarily
possess simple dynamical properties.

I have received much help from F. C. Hoppensteadt. H. E.
Huppert. A. 1. Mees,  C. J. Preston. S. Smale,  J. A. Yorke, and
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particularly  from G. F. Oster. This work  was  supported  in part
by the NSF.
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