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review article

Simple mathematical models with very

complicated dynamics

Robert M. May*

First-order difference equations arise in many contexts in the biological, economic and social sciences.
Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical
behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparentfy random
fluctuations. There are consequently many fascinating problems, some concerned with delicate
mathematical aspects of the fine structure of the trajectories, and some concerned with the practical
implications and applications. This is an interpretive review of them.

THERE are many situations, in many disciplines, which can be
described, at least to a crude first approximation, by a simple
first-order difference equation. Studies of the dynamical
properties of such models usually consist of finding constant
equilibrium solutions, and then conducting a linearised analysis
to determine their stability with respect to small disturbances:
explicitty nonlinear dynamical features are wusually not
considered.

Recent studies have, however, shown that the very simplest
nonlinear difference equations can possess an extraordinarily
rich spectrum of dynamical behavidur, from stable points,
through cascades of stable cycles, to a regime in which the
behaviour (although fully deterministic) is in many respects
“chaotic”, or indistinguishable from the sample function of a
random process.

This review article has several aims.

First, although the main features of these nonlinear phen-
omena have been discovered and independently rediscovered by
several people, | know of no source where all the main results
are collected together. | have therefore tried to give such a
synoptic account. This is done in a brief and descriptive way.
and includes some new material: the detailed mathematical
proofs are to be found in the technical literature, to which
signposts are given.

Second, | indicate some of the interesting mathematical
questions which do not seem to be fully resolved. Some of these
problems are of a practical kind, to do with providing a prob-
abilistic description for trajectories which seem random, even
though their underlying structure is deterministic. Other
problems are of intrinsic mathematical interest, and treat such
things as the pathology of the bifurcation structure, or the truly
random behaviour that can arise when the nonlinear function
F(.\")ofequa[ion (I) is not analytical. One aim hereis to stimulate
research on these questions, particularly on the empirical
questions which relate to processing data.

Third, consideration is given to some fields where these
notions may find practical application. Such applications range
from the abstractly metamorphical (where, for example, the
transition from a stable point to "chaos" serves as a metaphor
for the onset of turbulence in a fluid), to models for the dynamic
behaviour of biological populations (where one can seek to use
field or laboratory data to estimate the values of the parameters
in the difference equation).
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Fourth, there is a very brief review of the literature pertaining
to the way this spectrum of behaviour-stable points, stable
cycles, chaos-can arise in second or higher order difference
equations (that is, two or more dimensions; two or more
interacting species), where the onset of chaos usually requires
less severe nonlinearities. Differential equations are also
surveyed in this light; it seems that a three-dimensional system
of first-order ordinary differential equations is required for the
manifestation of chaotic behaviour.

The review ends with an evangelical plea for the introduction
of these difference equations into elementary mathematics
courses, so that students’ intuition may be enriched by seeing
the wild things that simple nonlinear equations can do.

First-order difference equations

One of the simplest systems an ecologist can study is a season-
ally breeding population in which generations do not overlap! ™,
Many natural populations, particularly among temperate zone
insects (including many economically important crop and
orchard pests), are of this kind. In this situation, the observa-
tional data will usually consist of information about the
maximum, or the average, or the total population in each
generation. The theoretician seeks to understand how the
magnitude of the population in generation f+1, X, is
related to the magnitude of the population in the preceding
generation ¢, X¢: such a relationship may be expressed in the
general form

Xy = F(X) @

The function F{.X) will usually be what a biologist calls “density
dependent”, and a mathematician calls nonlinear; equation (1) is
then a first-order. nonlinear difference  equation.

Although | shall henceforth adopt the habit of referring to the
variable X as “the population”, there are countless situations
outside  population biology where the basic equntion (1),
applies. There are other examples in biology, as for example
in genetics®® (where the equation describes the change in gene
frequency in time) or in epidemiology® (with X the fraction of
the population infected at time t). Examples in economics
include models for the relationship between commodity
quantity and price®, for the theory of business ¢ycles®, and for
the temporal sequences generated by various other economic
quantities!®, The general equation (1) also is germane to the
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learning (where X may be the number of bits of information that
can be remembered after an interval t), or in the propagation of
rumours in variously structured societies (where X is the
number oi people to have heard the rumour after time t). The
imaginative reader will be able to invent other contexts for
equation (1).

In many of these contexts, and for biological populations in
particular. there is a tendency for the variable X to increase
from one generation to the next when it is small, and for it to
decrease when it is large. That is, the nonlinear function F(X)
often has the following properties: F(0)=0; F(X) increases
monotonically as X increases through the range 0< X< A
(with F(X) attaining its maximum value at X=4); and F(X)
decreases monotonically as X increases beyond X=A4. More-
over, F(X) will usually contain one or more parameters which
“tune” the severity of this nonlinear behaviour: parameters
which tune the steepness of the hump in the F(X) curve. These
parameters will typically have some biological or economic or
sociological significance.

A specific example is afforded by the equation!:$:13-%3

N'*l = IVf(a—bN') (2)

This is sometimes called the “logistic” difference equation, In
the limit 6=0, it describes a population growing purely expon-
entially (for a> 1); for 50, the quadratic nonlinearity pro-
duces a growth curve with a hump, the steepness of which is
tuned by the parameter a. By writing X'=4/N/a, the equation may
be brought into canonical form!-4-42-23

X = aX (1 — X0 3)

In this form, which is illustrated in Fig. 1, it is arguably the
simplest nonlinear difference equation. | shall use equation (3)
for most of the numerical examples and illustrations in this
article. Although attractive to mathematicians by virtue of its
extreme simplicity, in practical applications equation (3) has the
disadvantage that it requires X to remain on the interval
0< X< | if X ever exceeds unity, subsequent iterations diverge
towards --o (which means the population becomes extinct).
Furthermore, F(X) in equation (3) attains a maximum value of
afd (at X=3%); the equation therefore possesses non-trivial
dynamical behaviour only if a<4. On the other hand, all
trajectories are attracted to X=0if @< I. Thus for non-trivial

Fig. 1A typical form for the relationship between X,,,and X,
described by equation {1 ). The curves are for equation (3), with

@ =2.707 (a); and a = 3.414 (4). The dashed lines indicate the

slope at the “fixed points” where F(.Y)intersects the 43> line:

for the case q this slope is less steep than —45” and the fixed

point is stable; for.b the slopeis steeper than —45° and the
point is unstable.

1.0

-‘Yl +1
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dynamical behaviour we require | <a<4; failing this, the
population becomes extinct.

Another example, with a more secure provenance in the
biological literature!-23-2* is the equation

Xewr = Xeexplr(1—- X)) 4

This again describes a population with a propensity to simple
exponential growth at low densities. and a tendency to decrease
at high densities. The steepness of this nonlinear behaviour is
tuned by the parameter r. The model is plausible for a single
species population which is regulated by an epidemic disease at
high density 2%, The function F(X) ofequation (4) is slightly more
complicated than that of equation (3), but has thecompensating
advantage that local stability implies global stability’ for all
X>0.

The forms (3) and (4) by no means exhaust the list of single-
humped functions F(X) for equation (I) which can be culled
from the ecological literature. A fairly full such catalogue is
ginve, complete with references, by May and Ostert. Other similar
mathematical functions are given by Metropolis gf af.'s. Yet
other forms for F(X) are discussed under the heading of
“mathematical curiosities” below.

Dynamic properties of equation (1)

Possible constant, equilibrium values (or “fixed points”) of X in
equation (1) may be found algebraically by putting X,+=X,=
X*, and solving the resulting equation

X* = F(X%) (5)

An equivalent graphical method is to find the points where the
curve F(X) that maps X, into JX,,, intersects the 45" line,
X,H=X., which corresponds to the ideal nirvana of zero
‘population growth; see Fig. 1 For the single-hump curves
discussed above. and exemplified by equations (3) and (4), there
are two such points: the trivial solution X:O‘ and a non-trivial
solution X* (which for equation (3) is X™* = 1 -[l/o]).

The next question concerns the stability of the equilibrium
point X*, This can be seen3"#:1#=2.1d 5 depend on the slope
of the F(X) curve at X*. This slope, which is illustrated by the
dashed lines in Fig. 1, can be designated

AR(X*) = [dF/dX]x =x* (6)

So long as this slope lies between 45° and —45° (that is, )M
between + l and — 1), making an acute angle with the 45° ZPG

line, the equilibrium point X* will be at least locally stable,
attracting all trajectories in its neighbourhood. In equation (3),

for example, this slope is A =2—g: the equilibrium point is
therefore stable, and attracts all trajectories originating in the
interval 0< Xc |, if and only if | <a<3.

As the relevant parameters are tuned so that the curve F(X)
becomes more and more steeply humped, this stability-deter-
mining slope at .¥* may eventually steepen beyond -45” (that is,
AM < .)), whereupon the equilibrium point X* is no longer
stable.

What happens next? What happens,
equation (3)?

To answer this question, it is helpful to look at the map which
relates the populations at successive intervals 2 generations
apart; that is, to look at the function which relates Niato Xe
This second iterate of equation (I) cnn be written

for example, for g> 3 in

Xev: = FIF(X)) (N
or, introducing an obvious piece of notation,
Xees = FO(X,) : ®)

The map so derived from equation (3) is illustrated
Population values which recur every second generation

in Figs 2and 3.
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Fig. 2 The map relating X, ,, to X,, obtained by two iterations of

equation (3). This tigure is for the case (a) of Fig. |,, g = 2.707:

the basic fixed point is stable, and it is the only point at which

FO(X) intersects the 45° line (where its slope, shown by the
dashed line, is less steep than 45’).

is, fixed points with period 2) may now be written as X*,, and
found either algebraically from

Xty = FR(X*y) ®

or graphically from the intersection between the map F®(X)
and the 45" line, as shown in Figs 2 and 3. Clearly the equi-
librium point X* of equation (5) is a solution of equation (9);
the basic fixed point of period | is a degenerate case of a period
2 solution. We now make a simple, but crucial, observation!:
the slope of the curve F#(X) at the point X* defined as
k"-"(X') and illustrated by the dashed lines in Figs 2 and 3, is
the square of the corresponding slope of F(X)

AB(X*) = M) (10)
This fact can now be used to make plain what happens when the
fixed point X* becomes unstable. If the slope of F(X) is less than
-45" (that is, A < 1), as illustrated by curve a in Fig. 1,
then X'* is stable. Also, from equation (10), this implies 0< A/¥ <
corresponding to the slope of F®' at X* lying between 0” and
45°, as shown in Fig. 2. As long as the fixed point X* is stable, it
provides the only non-trivial solution to equation (9). On the
other hand, when AfY steepens beyond —45° (that is,
fAW{ > 1), as illustrated by curve b in Fig 1, X* becomes
unstable. At the same time, from equation (IO) this implies
A®> | corresponding to the slope of F** at X* steepening
beyond 45°, as shown in Fig. 3. As this happens, the curve
F® (X) must develop a “loop”, and two new fixed points of
period 2 appear, as illustrated in Fig. 3.

In short, as the nonlinear function F(X) in equation (I)
becomes more steeply humped, the basic tixed point X'* may
become unstable. At exactly the stage when this occurs, there
are born two new and initially stable fixed points of period 2,

christened

=
+

between which the system alternates in a stable cycle of period 2, "~

The sort of graphical analysis indicated by Figs I, 2 and 3, along
with the equation (I0). is all that is needed to establish this
generic result'+d,

As before, the stability of this period 2 cycle depends on the
slope of the curve F*Y(.X') at the 2 points. (This slope is easily
shown to be the same at both points!-*", and more generally to
be the same at all & points on a period 4 cycle.) Furthermore, as
is clear by imagining the intermediate stages between Figs 2 and
3, this stability-determining slope has the value A = -1 at the
birth of the 2-point cycle, and then decreases through zero
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towards *=—1 as the hump in F(X) continues to steepen.
Beyond this point the period 2 points will in turn become un-
stable, and bifurcate to give an initially stable cycle of period 4.
This in turn gives way to acycle of period 8, and thence to a
hierarchy of bifurcating stable cycles of periods 16, 32, 64, . . .,
2. In each case. the way in which a stable cycle of period g
becomes unstable, simultaneously bifurcating to produce a new
and initially stable cycle of period 2%, is basically similar to the
process just adumbrated for kK = 1 A more full and rigorous
account of the material covered so far is in ref. 1.

This “very beautiful bifurcation phenomenon’? is depicted
in Fig. 4, for the example equation (3). It cannot be too strongly
emphasised that the process is generic to most functions F{X)
with a hump of tunable steepness. Metropolis er gf,!® refer to
this hierarchy of cycles of periods 2" 3s the harmonics of (he
fixed point X*.

Although this process produces an infinite sequence of cycles
with periods 2" {n—o¢), the “window” of parameter values
wherein any one cycle is stable progressively diminishes, so that
the entire process is a convergent one, being bounded above by
some critical parameter value. (This is true for most, but not
all, functions F(X): see equation (17) below.) This critical
parameter value is a point of accumulation of period 2" cycles.
For equation (3) it is denoted a.: a.=3.5700.. .

Beyond this point of accumulation (for example, for g> @, in
equation (3)) there are an infinite number of tixed points with
different periodicitics, and an infinite number of different
periodic cycles. There are also an uncountable number of initial
points X, which give totally aperiodic (although bounded)
trajectories; no matter how long the time series generated by
F(X) is run out, the pattern never repeats. These facts may be
established by a variety of methods!-*%+22-3 gSych a situation,
where an infinite number of different orbits can occur, has been
“chaotic’ by Li and Yorke?.

As the parameter increases beyond the critical value, at first
all these cycles have even periods, with X, alternating up and
down between values above, and values below, the fixed point
X*. Although these cycles may in fact be very complicated
(having a non-degenerate period of, say, 5,726 points before
repeating), they will seem to the casual observer to be rather like
a somewhat “noisy” cycle of period 2. AS the parameter value
continues to increase, there comes a stage (at @=3.6786 . . for
equation (3)) at which the first odd period cycle appears. At
first these odd cycles have very long periods, but as the para-
meter value continues to increase cycles with smaller and
smaller odd periods are picked up, until at last the three-point

Fig. 3 As for Fig. 2, except that here @ = 3.414, as in Fig. Ib.

The basic fixed point is now unstable: the slope of FM(X) at

this point steepens beyond 45'. leading to the appearance of
two new solutions of period 2.

1.0

0.5
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Fig. 4 This figure illustrates some of the stable ( ) and
unstable (== «m == —) fixed points of various periods that can
arise by bifurcation processes in equation (1) in general, and
equarion (3) in particular. To the left, the basic stable fixed point
becomes unstable and gives rise by a succession of pitchfork
bifurcations to stable harmonics of period 2”; none of these
cycles is stable beyond a = 3.5700. To the right, the two period
3 cycles appear by tangent bifurcation: one is initially unstable;
the other is initially stable. but becomes unstable and gives way
to stable harmonics of period 3 x 27 which have a point of
accumulation at @ = 3.8495. Note the change in scale on the
a axs, needed to put both examples on the same figure. There
are infinitely many other such windows, based on cycles of
higher periods.

cycle appears (at g=3,8284 . . for equation (3)). Beyond this
point, there are cycles with every integer period, as well as an
uncountable number of asymptotically aperiodic trajectories:
Li and Yorke= entitle their original proof of this result “Period
Three Implies Chaos”.

The term “chaos” evokes an image of dynamical trajectories
which are indistinguishable from some stochastic process.
Numerical simulations!2-1%:21:2%38 of the dynamics of equation
(3), (4) and other similar equations tend to confirm this impres-
sion. But, for smooth and “sensible” functions F(X) such as in
equations (3) and (4). the underlying mathematical fact is that
for any specified parameter value there is one unique cycle that
is stable, and that attracts essentially all initial points®%2# (see
ref. 4, appendix A, for a simple and lucid exposition). That is,
there is one cycle that “owns” almost all initial points; the
remaining infinite number of other cycles, along with the
asymptotically aperiodic trajectories, own a set of points which.
although uncountable, have measure zero.

As is made clear by Tables 3 and 4 below, any one particular
stable cycle is likely to occupy an extraordinarily narrow
window of parameter values. This fact, coupled with the long
time it is likely to take for transients associated with the initial
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conditions to damp out. means that in practice the unique
cycle is unlikely to be unmasked. and that a stochastic descrip-
tion of the dynamics is likely to be appropriate. in spite of the
underlying deterministic structure. This point is pursued further
under the heading “practical applications”, below.

The main messages of this section arc summariscd in Table
I, which sets out the various domains of dynamical behaviour
of the equations (3) and (4) as functions of the parameters, g
and r respectively, that determine the severity of the nonlinear
response. These properties can be understood qualitatively in a
graphical way, and are generic to any well behaved F(.X) in
equation (1).

We now proceed to a more detailed discussion of the mathe-
matical structure of the chaotic regime for analytical functions.
and then to the practical problems alluded to above and to a
consideration of the behavioursl peculiaritics exhibited by non-
analytical functions (such as those in the two right hand columns
of Table I).

Fine structure of the chaotic regime

We have seen how the original fixed point X'* bifurcates to give
harmonics of period 2”. But how do new cycles of period A
arise?

The general process is illustrated in Fig. 5 which shows how
period 3 cycles originate. By an obvious extension of the
notation introduced in equation (8), populations three genera-
tions apart are related by

Newa = FOOXY) (1)
If the hump in F(X) is sufficiently steep, the threefold iteration
will produce a function FWYX) with 4 humps, as shown in
Fig. 5 for the F(X) of equation (3). At first (for ¢ < 3.8254 . . in
equation 3) the 45' line intersects this curve only at the single
point X* (and at X=0), as shown by the solid curve in Fig. 5.
As the hump in F(.X) steepens, the hills and valleys in F*®'(.X')
become more pronounced, until simultaneously the first two
valleyssink and the final hill rises to touch the 45‘ line. and then
to intercept it at 6 new points, as shown by the dashed curve in
Fig. 5. These 6 points divide into two distinct three-point cycles.
As can be made plausible by imagining the intermediate stages
in Fig. 5, it can be shown that the stability-determining slope of
F9(X) at three of these points has a common value, which is
A =4 | at their birth, and thereafter steepens beyond -+ 1 :
this period 3 cycle is never stable. The slope of F*(X) at the
other three points begins at A=<+ |, and then decreases
towards zero, resulting in a stable cycle of period 3. As f(X)
continues to steepen, the slope A'*! for this intially stable
three-point cycle decreases beyond — | ; the cycle becomes
unstable, and gives rise by the bifurcation process discussed in
the previous section to stable cycles of period 6, 12, 24. . . |
3% 2" This birth of a stable and unstable pair of period 3
cycles, and the subsequent harmonics which arise as the
initially stable cycle becomes unstable. are illustrated to the right
of Fig. 4.

Table | Summary of the way various “single-hump” functions F(Y), from equation (| ), behave in the chaotic region,

distinguishing the dynamical

properties which are generic from those which are not

The function F(Y)

of equation (1) aX(l—X)

Tunable parameter a
Fixed point becomes unstable 3.0000
"Chatoic"  region  begins

(point oF accumulation  of cycles of period 2] 3.5700
Iirst odd-period  cycle appears 3.6786
Cycle with period 3 appears

[and therefore every integer period present] 3.8284
"Chatoic"  region ends 4.0000+
Are there stable cycles in the chaotic region? Yrs

caXif Yet ANif Vel
Yexp(r(l - )] all = X)1if X> 4 PR N B
r a b

2.0000 1.0000* 2.0000
2.69'4 |.0000 2.0000
2.8332 1.4142 2.6180
3.1024 1.6180 3.0000
"t 2.000t i
Yes NO No

- Below this 4 value, Y 0 is stable
7 All solutions are attracted to . - for 4 values beyond this.

* In practice, as ror b becomes large enough, .V will eventuadly be carried so low as to be effectively zero, thus producing extinetion in models
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Table 2 Catalogue of the number of periodic points, and of the various cycles (with periods k= | up to Il), arising from equation (I) with a
single-humped function F{.Y)

k \ 2
Possible total number of points with period & 2 4
Possible total number of points with non-degenerate
period & 2 2
Total number of cycles of period k. including those which
are degenerate and/or harmonicsand ‘or never locally stable 2 3
Total nhumber of non-degenerate cycles (including harmonics
and unstable cycles) 2 I
Total number of non-degenerate, stable cycles (including

harmonics) I I
Total number of non-degenerate, stable cycles whose basic
period is k (that is, excluding harmonics) ! -

3 4 5 6 1 3 9 10 i1 12

8 16 32 64 128 256 512 1,024 2,048 4,096
6 12 30 54 126 240 504 990 2,046 4.020

4 6 8 14 20 36 60 103 188 352
2 3 6 9 IS 30 56 99 186 335
1 2 3 5 9 16 28 51 93 170
1 1 3 4 9 14 28 48 93 165

There are, therefore, two basic kinds of bifurcation pro-
cesses™ for first order difference equations. Truly new cycles oi
period k arise in pairs (one stable. one unstable) as the hills and
valleys of higher iterates of F(X) move. respectively, up and
down to intercept the 45’ line, as typified by Fig. 5. Such cycles
are born at the moment when the hills and valleys become
tangent to the 45° line, and the initial slope of the curve F‘“
at the points is thus A/® = = | : this type of bifurcation may be
called'* a tangent bifurcation or a A=-~ | bifurcation. Con-
versely, an originally stable cycle of period & may become
unstable as F(.X') stcepcns. This happens when the slope of F*
at thcsc period & points steepens beyond A= — I, whereupon
a new and initially stable cycle of period 24 is born in the way
typified by Figs 2 and 3. This type of bifurcation may be
called a pitchfork bifurcation (borrowing an image from the
left hand side of Fig. 4) or a A= — | bifurcation®3,

Putting all this together, we conclude that as the parameters
in F(X) are varied the fundamental, stable dynamical units are
cycles of basic period &, which arise by tangent bifurcation,
along with their associated cascade of harmonics of periods
k2", which arise by pitchfork bifurcation. On this basis, the
constant equilibrium solution X* and the subsequent hierarchy
of stable cycles of periods 2%s merely a special case, albeit a
conspicuously important one (namely A= 1), of a general
phenomenon. In addition, remember!-¥**** that for sensible,
analytical functions (such as, for example. those in equations
(3) and (4)) there is a unique stable cycle for each value of the
parameter in F(X). The entire range of parameter values
{1<a< 4 in equation (3), 0< r in equation (4)) may thus be
regarded as made up of infinitely many windows of parameter

Fig. 5 The relationship between X,.,and X,, obtained by three
iterations of equation (3). The solid curve is for ¢ = 3.7, and
only intersects the 45° line once. As q increases. the hills and
valleys become more  pronounced. The dashed curve is for

a = 3.9, and six new period 3 points have appeared (arranged
as two cycles each of period 35)

I Of

e

5 1.0

values-some large, some unimaginably small-each corres-
ponding to a single one of these basic dynamical units. Tables 3
and 4, below, illustrate this notion. These windows are divided
from each other by points (the points of accumulation of the
harmonics of period k2") at which the system is truly chaotic,
with no attractive cycle: although there are infinitely many such
special parameter values, they have measure zero on the
interval of all values.

How are these various cycles arranged along the interval of
relevant parameter values? This question has to my knowledge
been answered independently by at least 6 groups of people,
who have seen the problem in the context of combinatorial
theory!®®,  numerical analysis'®!, population biology’, and
dynamical systems theory**-3! (broadly defined).

A simple-minded approach (which has the advantage of
requiring little technical apparatus, and the disadvantage of
being rather clumsy) consists of first answering the question,
how many period & points can there be? That is, how many
distinct solutions can there be to the equation

X* = FIO(Y* )7 (12)

If the function F(X) is sufficiently steeply humped, as it will be
once the parameter values are sufficiently large, each successive
iteration doubles the number of humps, so that F(*¥(Y) has
2 %=1 humps. For large enough parameter values, all these hills
and valleys will intersect the 45" line, producing 2 ¥ fixed points
of period k. These are listed for k& 4 12 in the top row of Table 2.
Such 3 list includes degenerate points of period k, whose period
is a submultiple of k; in particular, the two period 1 points
(X=0 and .X*) are degenerate solutions of equation (12) for all
k. By working from left to right across Table 2, these degenerate
points can be subtracted out, to leave the total number of non-
degenerate points of basic period k, as listed in the second row
of Table 2. More sophisticated ways of arriving at this result
are given elsewheretd-14:18.22.30.31

For example, there eventually are 2¢=64 points with period
6. These include the two points of period 1, the period 2
“harmonic” cycle, and the stable and unstable pair of triplets of
points with period 3, for a total of 10 points whose basic period
is a submultiple of 6; this leaves 54 points whose basic period is
6.

The 2' period k points are arranged into various cycles of
period K, or submultiples thereof. which appear in succession
by either tangent or pitchfork bifurcation as the parameters in
F(X) are varied. The third row in Table 2 catalogues the total
number of distinct cycles of period k which so appear. In the
fourth row!, the degenerate cycles are subtracted out, to give
the total number of non-Jcgencrntc cycles of period k: these
numbers must equal those of the second row divided by K.
This fourth row includes the (stable) harmonics which arise by
pitchfork bifurcation, and the pairs of stable-unstable cycles
arising by tangent bifurcation. By subtracting out the cycles
which are unstable from birth. the total number of possible
stable cycles is given in row five; thcsc figures can also be
obtained by less pedestrian methods!318% Finally we may
subtract out the stable cycles which arise by pitchfork bifurca-
tion, as harmonics of some simpler cycle, to arrive at the final
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Table 3 A catalogue of the stable cycles (with basic periods up to 6) for rhc equation \',.; < a.X (1= \))

a value at which:

Period of Basic cycle Basic cycle
basic cycle first appears becomes unstable
g 1.0000
3 3.8284 3.8415 W
4 3.9601 3.9608
5(a) 3.7352 37411
5(b 3.9056 3.9061
5(c) - 3.99030
6(a) 3'920'6 3.6304
6(b) 36586 3.937506
6(c) 3.977760 3.977784
6(d) 3.997583 3.997585

Subsequent cascade
of “harmonics” with
period k2" all

become unstable

33495 @

3.9612
3.7430
3.9065
3.99032
3.6327
3.937649
3.977800
3.997556

Width oi the range
of ¢ values over
which the basic cycle,
or onr of its harmonics.
is attractive

2.5700
0.0211
0.001 |
0.0048
0.0009
0.00006
0.0062

0.000133 i
0.000040 i

0.000003

row in Table 2, which lists the number of stable cycles whose
basic period is k.

Returning to the example of period 6. we have already noted
the five degenerate cycles whose periods are submultiples of 6.
The remaining 54 points are parcelled out into one cycle of
period 6 which arises as the harmonic of the only stable three-
point cycle, and four distinct pairs of period 6 cycles (that is,
four initially stable ones and four unstable ones) which arise by
successive tangent bifurcations. Thus, reading from the foot of
the column for period 6 in Table 2, we get the numbers 4, 5. 9,
14,

Using various labelling tricks, or techniques from combina-
torial theory, it is also possible to give a generic list of the order
in which the various cycles appear!:!3-1%:22  For example, the
basic stable cycles of periods 3, 5, 6 (of which there are respect-
ively 1, 3, 4) must appear in the order 6, 5, 3, 5, 6, 6. 5, 6:
compare Tables 3 and 4. Metropolis et al.** give the explicit such
generic list for all cycles of period k <1 1.

As a corollary it follows that, given the most recent cycle to
appear, it is possible (at least in principle) to catalogue all the
cycles which have appeared up to this point. An especially
elegant way of doing this is given by Smale and Williams”,
who show, for example, that when the stable cycle of period 3
first originates, the total number of other points with periods
k, N, which have appeared by this stage satisfy the Fibonacci
series. N¢=2, 4, 5 8 12, 19, 30, 48, 77, 124, 200. 323 for
k=1,2,..., 12: this is to be contrasted with the total number of
points of period k which will eventually appear (the top row of
Table 2) as F(X) continues to steepen,

Such catalogues of the total number of fixed points, and of
their order of appearance, are relatively easy to construct. For
any particular function F(X), the numerical task of finding the
windows of parameter values wherein any one cycle or its
harmonics is stable is. in contrast, relatively tedious and
inelegant. Before giving such results, two critical parameter
values of special significance should be mentioned.

Hoppcnsteadt and Hyman*' have given a simple graphical
method for locating the parameter value in the chaotic regime
at which the first odd period cycle appears. Their analytic
recipe is as follows. Let a be the parameter which tunes the
steepness of F(X) (for example, a=a for equation (3), a=r for
equation (4)). X*(a) be the fixed point of period | (the non-
trivial solution of equation (5)), and X max{a) the maximum
value attainable from iterations of equation (1) (that is, the
value of F(X) at its hump or stationary point). The first odd
period cycle appears for that value of « which satistics2!-3

X¥a) = FP>Y paela)) (13)

As mentioned above another critical value is that where the
period 3 cycle first appears. This parameter value may be found
numerically from the solutions of the third iterate of equation
(1'): for equation (3) it is'' g==1 -y §,

Myrberg! (for all A<10) and Metropolis er ol (for all
A7) have given numerical information about the stable cycles
in equation (3). They do not give the windows of parameter

values, but only the single, value at which a given cycle is
maximally stable: that is, the value of g for which the stability-
determining slope of F**¥(X) is zero, L{*?=0. Since the slope
of the k-times iterated map F¢ k) at any point on a period k cycle
is simply equal to the product of the slopes of F(X) at each of
the points X* , on this cycle™®*, the requirement A{¥=0
implies that X'=A (the stationary point of F(X), where A{1)=0)
is one of the periodic points in question, which considerably
simpliies the numerical calculations.

For each basic cycle of period & (as catalogued in the last
row of Table 2), it is more interesting to know the parameter
values at which: (I) the cycle first appears (by tangent bifurca-
tion); (2) the basic cycle becomes unstable (giving rise by suc-
cessive pitchfork bifurcations to a cascade of harmonics of
periods k27): (3) all the harmonics become unstable (the point
of accumulation of the period k2" cycles). Tables 3 and 4 extend
the work of May and Oster!, to give this numerical information
for equations (3) and (4). respectively. (The points of
accumulation are not ground out mindlessly, but are calculated
by a rapidly convergent iterative procedure, see ref. 1, appendix
A.) Some of these results have also been obtained by
Gumowski and Mira?2.

Practicd problems

Referring to the paradigmatic example of equation (3), we can
now see that the parameter interval | <a<4 is made up of a
one-dimensional mosaic of infinitely many windows of u-values,
in each of which a unique cycle of period &, or one of its
harmonics, attracts essentially all initial points. Of these
windows. that for 1 <@< 3.5700 . . corresponding to k=1 and
its harmonics is by far the widest and most conspicuous. Beyond
the first point of accumulation, it can be seen from Table 3 that
these windows are narrow, even for cycles of quite low periods,
and the windows rapidly become very tiny as Kk increases.

As a result, there develops a dichotomy between the under-
lying mathematical behaviour (which is exactly determinable)
and the “commonsense” conclusions that one would draw from
numerical simulations. If the parameter @ is held constant at one
value in the chaotic region, and equation (3) iterated for an
arbitrarily large number of generations, a density plot of the
observed values of .Y, on the interval 0 to | will settle into k
equal spikes (more precisely, delta functions! corresponding to
the k points on the stable cycle appropriate to this u-value. But
for most a-values this cycle will have a fairly large period, and
moreover it will typically take many thousands of generations
before the transients associated with the initial conditions are
damped out: thus the density plot produced by numerical
simulations usually looks like a sample of points taken from
some continuous  distribution.

An especially intersting set of numerical
due to | Hoppensteadt (personal communication) who has
combined many iterations to produce a density plot of Y, for
each one of a sequence Of g-values, gradually increasing from
3.5700 . . 1o 4. These results are displayed as a move. As can
be expected from Table 3, some of the more conspicuous cycles
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do show up as sets of ddta functions: the 3-cycle and its first Non-andytical functions F(X) in which the hump is in fact a
few harmonics the first Scyde: the firt 6cyde But for most  spike provide an interesting specia case. Here we may imegine

ze vaues of a the density plot looks like the sample function of a  giikey hills and valleys moving to intercept the 45° linein Fig. 5,

s - rendom process. This is paticularly true in the neighbourhood  and it may be that both the cycles bom by tangent bifurcation
of the avdue where the first odd cycle appears (a=3.6786 . ), ae ungdable from the outset (one having A¢© > 1, the other

Miva® and again in the neighbourhood of a=4: this is not surprising, AO < —1), for dl &> 1. There are then no sable cycles in the
because each of these locaions is a point of accumulation of cheotic regime, which is therefore literaly chaotic with a
points of accumulation. Despite the underlying discontinuous  continuous and truly ergodic density didtribution function.
changes in the periodicities of the stable cycles, the observed One simple example is provided by
dengty pattern tends to vary smoothly. For example, as a
increases toward the value a which the 3-cycle appears, the Xeoy = aXe;if X, <4 (14
density plot tends to concentrate around three points. and it X =all=X):if Y, >%
smoothly diffuses away from these three points after the 3-cyde
and dl its harmonics become undiable. defined on the interval 0 < X< 1. For 0 < g < 1, al trajectories

| think the most interesting mathematicll problem lies in are attracted to X=0; for | <a< 2, there are infinitdy many

designing a way to construct some approximate and “effectively periodic orbits, dong with an uncountable number of gperiodic

cycle is  continuous’ density spectrum. despite the fect that the exact trgjectories, none of which are locdly sable. The firs odd
tability- dengty function is determinable and is dways a st of ddta period cycle appears a a=+/2, and dl integer periods are

e dope  functions. Perhaps such techniques have dready been devel- represented beyond a=(1 + +/5)/2. Kac*® has given a careful

& cyde oped in ergodic theory®® (which lies a the foundations of  discussion of the case a=2. Another example, this time with an

each of datisticd mechanics). as for example in the use of "coarse- extensive biologicd pedigree!=?, is the eguation

5(0=0 grained observers’. | do not know.

5 M=0) Such an effectively stochestic description of the dynamica Xesg = AX; il X< (15)

derably  properties of equation (4) for large r has been provided®®, dbeit Xigy = AX 50 X >
by tacticd tricks peculiar to that equation rather than by any

‘he lat genera method. As r increases beyond about 3, the trgjectories  If A> | this possesses a globally stable equilibrium point for

rameter  generated by this equation are. to an increasingly good approxi- b < 2. For b > 2 there is again true chaos, with no stable cycles:

sifurca-  Mmation, dmost periodic with period (1/r) exp(r— 1). the first odd cycle appears a b=(3++/5)/2, and dl integer
by suc- The opinion | am airing in this section is that dthough the  periods are present beyond 5==3. The dynamica properties of

‘nics of  exquisite fine structure of the cheotic regime is mathematically  equations (14) and (15) are summarised to the right of Table 2.

e point fascinating, it is irrelevant for most practical purposes. What The absence of andyticity is a necessary, but not a sufficient,

cextend Seems cdled for is some effectively stochadtic description of the condition for truly random behaviour®!, Consgder, for example,

mation deterministic dynamics. Wheress the various statements about

mts ,of the different cycles and their order of gppearance can be made Xy = (@D X0 Xe <
in generic fashion, such stochastic description of the actud Xy = aX(1-X) ; if Xi> % (16)

wo.ux  dynamics will be quite different for different F(X): witness the )

wed by difference between the behaviour of equation (4), which for This is the parabola of eguation (3) and Fig. 1, but with the
large r is dmost periodic "outbreaks' spaced meny generdions  left hand haf of F(X) flatened into a straight line. This equation
apart, versus the behaviour of eguation (3) which for a—4 is  does possess windows of a vaues, each with its own stable
not very different from 