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Chapter 12. Fourier Transform
Spectral Methods

12.0 Introduction

A very large class of important computational problems falls under the
general rubric of “Fourier transform methods” or “spectral methods.” For
some of these problems, the Fourier transform is simply an efficient compu-
tational tool for accomplishing certain common manipulations of data. In
other cases, we have problems for which the Fourier transform (or the related
“power spectrum”) is itself of intrinsic interest. These two kinds of problems
share a common methodology.

Largely for historical reasons the literature on Fourier and spectral meth-
ods has been disjoint from the literature on “classical” numerical analysis. In
this day and age there is no justification for such a split. Fourier methods
are commonplace in research and we shall not treat them as specialized or
arcane. At the same time, we realize that many computer users have had
relatively less experience with this field than with, say, differential equations
or numerical integration. Therefore our summary of analytical results will be
more complete. Numerical algorithms, per se, begin in 512.2.

A physical process can be described  either in the time domain, by the
values of some quantity h as a function of time t, e.g. h(t),  or else in the
frequency domain, where the process is specified by giving its amplitude H
(generally a complex number indicating phase also) as a function of frequency
f,  that is H(f), with -oo  < f < 00.  For many purposes it is useful to think
of h(t)  and H(f) as being two different representations of the same function.
One goes back and forth between these two representations by means of the
Fourier transform equations,

H(f) = 11  h(t)e2”iftdt

Jca
h(t) = H(f)e-2”if”df

--co

(12.0.1)

If t is measured in seconds, then f in equation (12.0.1) is in cycles per
second, or Hertz (the unit of frequency). However, the equations work with
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other units. If h is a function of position x (in meters), H  will be a function
of inverse wavelength (cycles per meter), and so on. If you are trained as
a physicist or mathematician, you are probably more used to using angular
frequency w, which is given in radians per sec. The relation between w and
f,  H(w) and H(f) is

w E 27rf H(w) = w(fIf42n (12.0.2)

and equation (12.0.1) looks like this

H(w) = J O” h(t)eiwtdt
--05

h(t) = ; J-=' H(w)ePiwtdw
00

(12.0.3)

We were raised on the w-convention, but we changed! There are fewer factors
of 27r  to remember if you use the f-convention, especially when we get to
discretely sampled data in $12.1.

From equation (12.0.1) it is evident at once that Fourier transformation
is a linear operation. The transform of the sum of two functions is equal to
the sum of the transforms. The transform of a constant times a function is
that same constant times the transform of the function.

In the time domain, function h(t) may happen to have one or more spe-
cial symmetries It might be purely real or purely imaginary or it might be
even, h(t) = h(-t), or odd, h(t) = -h(-t). In the frequency domain, these
symmetries lead to relationships between H(f) and H(-f). The following
table gives the correspondence between symmetries in the two domains:

If . . .
h(t) is real
h(t) is imaginary
h(t) is even
h(t) is odd
h(t) is real and even
h(t) is real and odd
h(t) is imaginary and even
h(t) is imaginary and odd

then. . .

H ( - f )  =  W(fl*
W-f)  = -IfWl*
H ( - f )  =  H ( f ) [i.e. H(f) is even]
H ( - f )  =  - H ( f )  [i.e. H(f) is odd]
H(f) is real and even
H(f) is imaginary and odd
H(f) is imaginary and even
H(f) is real and odd

In subsequent sections we shall see how to use these symmetries to increase
computational efficiency.

Here are some other elementary properties of the Fourier transform.
(We’ll use the “u” symbol to indicate transform pairs.) If

h(t)  -  H(f)
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is such a pair, then other transform pairs are

h(4  -  +c;) “time scaling” (12.0.4)

$4;)  -  Wf) “frequency scaling” (12.0.5)

h(t -  to)  -  H(f) eZxifto “time shifting” (12.0.6)

h(t)  e --2nifot  -  H(f  -  fo) “frequency shifting” (12.0.7)

With two functions h(t) and g(t), and their corresponding Fourier trans-
forms H(f) and G(f), we can form two combinations of special interest. The
convolution of the two functions, denoted g * h, is defined by

g*h=
r

g(T)h(t  -T)  dr (12.0.8)
--co

Note that g * h is a function in the time domain and that g * h = h * g. It
turns out that the function g * h is one member of a simple transform pair

g * h -  G(f)H(f) “Convolution Theorem” (12.0.9)

In other words, the Fourier transform of the convolution is just the product
of the individual Fourier transforms.

The correlation of two functions, denoted Corr(g, h), is defined by

Corr(g, h) G
SW

g(r + t)h(T) dr (12.0.10)
--03

The correlation is a function of t, which is called the lag. It therefore lies in
the time domain, and it turns out to be one member of the transform pair:

Corr(g, h)  -  G(fW*(f) “Correlation Theorem” (12.0.11)

[More generally, the second member of the pair is G(f)H(-f),  but we are
restricting ourselves to the usual case in which g and h are real functions,
so we take the liberty of setting H(-f)  = H*(f).] This result shows that
multiplying the Fourier transform of one function by the complex conjugate
of the Fourier Transform of the other gives the Fourier transform of their cor-
relation. The correlation of a function with itself is called its autocorrelation.
In this case (12.0.11) becomes the transform pair

Corr(g, 9)  -  IG(f12 “Wiener-Khinchin Theorem” (12.0.12)
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The total power in a signal is the same whether we compute it in the
time domain or in the frequency domain. This result is known as  Parseval’s
theorem:

Total Power E
/

O”  Ih(  dt = O”
-co s-cc

IH(  df (12.0.13)

Frequently one wants to know “how much power” is contained in the
frequency interval between f and f + df. In such circumstances one does not
usually distinguish between positive and negative f, but rather regards f as
varying from 0 (“zero frequency” or D.C.) to +oo.  In such cases, one defines
the one-sided power spectral density (PSD) of the function h as

p/t(f)  s IH( + IH( OLf<co (12.0.14)

so that the total power is just the integral of P,,(f)  from f = 0 to f = co.
When the function h(t) is real, then the two terms in (12.0.14) are equal,
so Ph  (f) = 2 ] H( f) 12. Be warned that one occasionally sees PSDs  defined
without this factor two. These, strictly speaking, are called two-sided power
spectral densities, but some books are not careful about stating whether one-
or two-sided is to be assumed. We will always use the one-sided density given
by equation (12.0.14). Figure 12.0.1 contrasts the two conventions.

If the function h(t) goes endlessly from --oo  < t < 00, then its total power
and power spectral density will, in general, be infinite. Of interest then is the
(one- or two-sided) power spectral density per unit time. This is computed
by taking a long, but finite, stretch of the function h(t), computing its PSD
[that is, the PSD of a function which equals h(t) in the finite stretch but
is zero everywhere else], and then dividing the resulting PSD by the length
of the stretch used. Parseval’s theorem in this case states that the integral
of the one-sided PSD-per-unit-time over positive frequency is equal to the
mean-square amplitude of the signal h(t).

You might well worry about how the PSD-per-unit-time, which is a func-
tion of frequency f, converges as one evaluates it using longer and longer
stretches of data. This interesting question is the content of the subject of
“power spectrum estimation,” and will be considered below in §12.8-$12.9.
A crude answer for now is: the PSD-per-unit-time converges to finite val-
ues at all frequencies except those where h(t) has a discrete sine-wave (or
cosine-wave) component of finite amplitude. At those frequencies, it becomes
a delta-function, i.e. a sharp spike, whose width gets narrower and narrower,
but whose area converges to be the mean-square amplitude of the discrete
sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need
in this chapter with one exception: In computational work, especially with
experimental data, we are almost never given a continuous function h(t) to
work with, but are given, rather, a list of measurements of h(ti)  for a discrete
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Figure 12.0.1 Normalizations of one- and two-sided power spectra. The area under the
square of the function, (a), equals the area under its one-sided power spectrum at positive
frequencies, (b), and also equals the area under its two-sided power spectrum at positive
and negative frequencies, (c).

set of ti’s. The profound implications of this seemingly unimportant fact are
the subject of the next section.

REFERENCES AND FURTHER READING:
Champeney, D.C. 1973, Fourier Transforms and Their Physical Applica-

tions (New York: Academic Press).
Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analy-

ses, Applications (New York: Academic Press).
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12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(t) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let ∆ denote the time interval
between consecutive samples, so that the sequence of sampled values is

h, = h(nA) n=..., -3, -2, -1, 0,  1, 2, 3, . .  .  (12.1.1)

The reciprocal of the time interval ∆ is called the sampling rate  if ∆ is
measured in seconds, for example, then the sampling rate is the number of
samples recorded per second.

Sampling Theorem and Aliasing

For any sampling interval ∆, there is also a special frequency fc,  called
the Nyquist critical frequency, given by

(12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak
value, then the next sample will be at its negative trough value, the sample
after that at the positive peak again, and so on. Expressed otherwise: Critical
sampling of a sine wave is two sample points per cycle. One frequently chooses
to measure time in units of the sampling interval ∆. In this case the Nyquist
critical frequency is just the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct,
reasons. One is good news, and the other bad news. First the good news.
It is the remarkable fact known as the sampling theorem:  If a continuous
function h(t),  sampled at an interval ∆, happens to be band-width limited to
frequencies smaller in magnitude than fc,  i.e., if H(f) = 0 for all IfI > fc,
then the function h(t) is completely determined by its samples h,. In fact,
h(t) is given explicitly by the formula

h(t) = A E h,  Sink$-f--~A)l (12.1.3)
ll=-CC

This is a remarkable theorem for many reasons, among them that it shows
that the “information content” of a band-width limited function is, in some
sense, infinitely smaller than that of a general continuous function. Fairly
often, one is dealing with a signal which is known on physical grounds to
be band-width limited (or at least approximately band-width~limited). For
example, the signal may have passed through an amplifier with a known, finite
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frequency response. In this case, the sampling theorem tells us that the entire
information content of the signal can be recorded by sampling it at a rate A-’
equal to twice the maximum frequency passed by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a
continuous function that  is not band-width limited to less than the Nyquist
critical frequency. In that case, it turns out that all of the power spectral
density which lies outside of the frequency range -fc  < f < fc is spuriously
moved into that range. This phenomenon is called aliasing. Any frequency
component outside of the frequency range (-fc,  fc)  is aliased  (falsely trans-
lated) into that range by the very act of discrete sampling. You can readily
convince yourself that two waves exp(2rifit)  and exp(27rifit)  give the same
samples at an interval A if and only if fi and fi differ by a multiple of l/A,
which is just the width in frequency of the range (--fc,fc).  There is little
that you can do to remove aliased power once you have discretely sampled a
signal. The way to overcome aliasing is to (i) know the natural band-width
limit of the signal--or else enforce a known limit by analog filtering of the
continuous signal, and then (ii) sample at a rate sufficiently rapid to give two
points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view:
If a continuous function has been competently sampled, then, when we come
to estimate its Fourier transform from the discrete samples, we can assume
(or rather we might as well assume) that its Fourier transform is equal to
zero outside of the frequency range in between -fc  and fc.  Then we look to
the Fourier transform to tell whether the continuous function has been com-
petently sampled (aliasing effects minimized). We do this by looking to see
whether the Fourier transform is already approaching zero as the frequency
approaches fc from below, or -fc  from above. If, on the contrary, the trans-
form is going towards some finite value, then chances are that components
outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from a finite number
of its sampled points. Suppose that we have N consecutive sampled values

hk = h(h), tk = kA, k = 0, 1, 2, .  . . N -  1 (12.1.4)

so that the sampling interval is A. To make things simpler, let us also suppose
that N is even. If the function h(t) is nonzero  only in a finite interval of time,
then that whole interval of time is supposed to be contained in the range of
the N points given. Alternatively, if the function h(t) goes on forever, then
the sampled points are supposed to be at least “typical” of what h(t) looks
like at all other times.

With N numbers of input, we will evidently be able to produce no more
than N independent numbers of output. So, instead of trying to estimate the
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(b)

Figure 12.1.1. The continuous function shown in (a) is nonzero  only for a finite interval of
time T. It follows that its Fourier transform, shown schematically in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled  with
a sampling interval A, as in (a), then the Fourier transform (c) is defined only between
plus and minus the Nyquist critical frequency. Power outside that range is folded over or
"aliased"  into the range. The effect can be eliminated only by low-pass filtering the original
function before  sampling.

Fourier transform H(;f)  at all values of f in the range -fc  to fc,  let us seek
estimates only at the discrete values

N Nn = --). . .)  -
2 2

(12.1.5)

The extreme values of n in (12.1.5) correspond exactly to the lower and up-
per limits of the Nyquist critical frequency range. If you are really on the
ball, you will have noticed that there are N + 1, not N, values of n in
(12.1.5); it will turn out that the two extreme values of n are not inde-
pendent (in fact they are equal), but all the others are. This reduces the
count to N.

The remaining step is to approximate the integral in (12.0.1) by a discrete
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sum:

s
O” h(t)

N - l N - l

H(fn)  = e2rifntdt
Kz

hk e2rifntka  = A
c

hk  e2lrikn/N

--co k=O k=O

(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final equality. The
final summation in equation (12.1.6) is called the discrete Fourier transform
of the N points hk.  Let us denote it by H,,

N - l
H,,  z c hk  e2niknlN

k=O

(12.1.7)

The discrete Fourier transform maps N complex numbers (the hk’s)  into N
complex numbers (the Hn’s).  It does not depend on any dimensional param-
eter, such as the time scale A. The relation (12.1.6) between the discrete
Fourier transform of a set of numbers and their continuous Fourier trans-
form when they are viewed as samples of a continuous function sampled at
an interval A can be rewritten as

H(fn)  = AH, (12.1.8)

where fn is given by (12.1.5).
Up to now we have taken the view that the index n in (12.1.7) varies

from -N/2 to N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is
periodic in n, with period N. Therefore, HP,  = HN-, n = 1,2,.  . . . With
this conversion in mind, one generally lets the n in H, vary from 0 to N - 1
(one complete period). Then n and k ( in hk)  vary exactly over the same
range, so the mapping of N numbers into N numbers is manifest. When this
convention is followed, you must remember that zero frequency corresponds to
n = 0, positive frequencies 0 < f < fc correspond to values 1 5 n 5 N/2 - 1,
while negative frequencies - fC  < f < 0 correspond to N/2 + 1 2 n 5 N - 1.
The value n = N/2  corresponds to both f = fC  and f = -fC.

The discrete Fourier transform has symmetry properties almost exactly
the same as the continuous Fourier transform. For example, all the symme-
tries in the table following equation (12.0.3) hold if we read hk  for h(t), H,
for H(f), and HN-~  for H(-f). (Likewise, “even” and “odd” in time refer
to whether the values hk  at k and N - k are identical or the negative of
each other.)

12.2 Fast Fourier Transform  (FFT) 4 0 7

The formula for the discrete inverse  Fourier transform, which recovers
the set of hk’s  exactly from the Hn’s is:

hk  = + Nc1  H, e--2?riknlN

n=O
(12.1.9)

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing
the sign in the exponential, and (ii) dividing the answer by N. This means
that a routine for calculating discrete Fourier transforms can also, with slight
modification, calculate the inverse transforms.

The discrete form of Parseval’s theorem is

N - l

c lhk12  = f  y ,H,,2
k=O n=O

(12.1.10)

There are also discrete analogs to the convolution and correlation theorems
(equations 12.0.9 and 12.0.11),  but we shall defer them to $12.4 and 512.5,
respectively.

REFERENCES AND FURTHER READING:

Brigham, E. Oran.  1974, The Fast Fourier Transform (Englewood Cliffs,
N.J.: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast  Transforms: Algori thms,  Analy-
ses, Applications (New York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier
transform (12.1.7) of N points? For many years, until the mid-1060s,  the
standard answer was this: Define W as the complex number

w  e  e274N (12.2.1)

Then (12.1.7) can be written as

N - l

H,,  = c Wnkh,,
k=O

(12.2.2)
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In other words, the vector of hk’s  is multiplied by a matrix whose (r~,k)~~
element is the constant W to the power n x Ic.  The matrix multiplication pro-
duces a vector result whose components are the &‘s.  This matrix multipli-
cation evidently requires N2  complex multiplications, plus a smaller number
of operations to generate the required powers of W. So, the discrete Fourier
transform appears to be an O(N2) process. These appearances are deceiving!
The discrete Fourier transform can, in fact, be computed in O(Nlog,  N) op
erations with an algorithm called the Fast Fourier Transform, or FFT. The
difference between N log, N and N2  is immense. With N = 106,  for example,
it is the difference between, roughly, 30 seconds of CPU time and 2 weeks of
CPU time on a microsecond cycle time computer. The existence of an FFT
algorithm became generally known only in the mid-1960s,  from the work of
J.W. Cooley and J.W. Tukey, who in turn had been prodded by R.L. Garwin
of IBM Yorktown Heights Research Center. Retrospectively, we now know
that a few clever individuals had independently discovered, and in some cases
implemented, fast Fourier transforms as many as 20 years previously (see
Brigham for references).

One of the earliest “discoveries” of the FFT, that of Danielson and Lanc-
zos in 1942, still provides one of the clearest derivations of the algorithm.
Danielson and Lanczos showed that a discrete Fourier transform of length N
can be rewritten as the sum of two discrete Fourier transforms, each of length
N/2. One of the two is formed from the even-numbered points of the original
N, the other from the odd-numbered points. The proof is simply this:

N - l

Fk = c ,2*W’$

j=o

N/2-1 N / 2 - - 1

=x
e2~Wi)lNf2j  + C e2+2j+l)lNj-2j+l

j=o j=O (12.2.3)
N/2-1 N/2-1

=c
e2~WP/2)j-2j  + wk  2  e2WlW/2)f2j+l

j=o i=o

= F;  + W” F;

In the last line, W is the same complex constant as in (12.2.1),  FE denotes
the lath component of the Fourier transform of length N/2 formed from the
even components of the original fj’s,  while F{  is the corresponding transform
of length N/2 formed from the odd components. Notice also that k in the
last line of (12.2.3) varies from 0 to N, not just to N/2. Nevertheless, the
transforms Fl  and F$  are periodic in Ic  with length N/2. So each is repeated
through two cycles to obtain Fk.

The wonderful thing about the Danielson-Lanczos Lemma is that it can
be used recursively. Having reduced the problem of computing Fk  to that of
computing Fi  and FL, we can do the same reduction of Fi  to the problem
of computing the transform of its N/4 even-numbered input data and N/4

12.2 Fast Fourier Transform  (FFT) 4 0 9

odd-numbered data. In other words, we can define F,“”  and  Fe0  to be the
discrete Fourier transforms of the points which are respectively  even-even
and even-odd on the successive subdivisions of the data.

Although there are ways of treating other cases, by far the easiest case
is the one in which the original N is an integer power of 2. In fact, we
categorically recommend that you only use FFTs  with N a power of two. If
the length of your data set is not a power of two, pad it with zeros up to the
next power of two. (We will give more sophisticated suggestions in subsequent
sections below.) With this restriction on N, it is evident that we can continue
applying the Danielson-Lanczos Lemma until we have subdivided the data all
the way down to transforms of length 1. What is the Fourier transform of
length one? It is just the identity operation that copies its one input number
into its one output slot! In other words, for every pattern of e’s and o’s
(numbering log, N in all), there is a one-point transform that is just one of
the input numbers fn

eoeeoeo~~~oee  _Fk - f7L for some n (12.2.4)

(Of course this one-point transform actually does not depend on k,  since it
is periodic in k with period 1.)

The next trick is to figure out which value of n corresponds to which
pattern of e’s and o’s in equation (12.2.4). The answer is: reverse the pattern
of e’s and o’s, then let e = 0 and o = 1, and you will have, in binary the value
of n. Do you see why it works? It is because the successive subdivisions of
the data into even and odd are tests of successive low-order (least significant)
bits of n.  This idea of bit reversal can be exploited in a very clever way which,
along with the Danielson-Lanczos Lemma, makes FFTs  practical: Suppose
we take the original vector of data fj and rearrange it into bit-reversed order
(see Figure 12.2.1),  so that the individual numbers are in the order not of j,
but of the number obtained by bit-reversing j. Then the bookkeeping on the
recursive application of the Danielson-Lanczos Lemma becomes extraordinar-
ily simple. The points as given are the one-point transforms. We combine
adjacent pairs to get two-point transforms, then combine adjacent pairs of
pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final  transform. Each combination
takes of order N operations, and there are evidently log, N combinations, SO

the whole algorithm is of order N log, N (assuming, as is the case, that the
process of sorting into bit-reversed order is no greater in order than N log, N).

This, then, is the structure of an FFT algorithm: It has two sections.
The first section sorts the data into bit-reversed order. Luckily this takes no
additional storage, since it involves only swapping pairs of elements. (If ki is
the bit reverse of ks, then k2  is the bit reverse of ICI.)  The second section has
an outer loop which is executed log, N times and calculates, in turn, trans-
forms of length 2, 4, 8, . . . , N. For each stage of this process, two nested inner
loops range over the subtransforms already computed and the elements of
each transform, implementing the Danielson-Lanczos Lemma. The operation
is made more efficient by restricting external calls for trigonometric sines and
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(a) W

Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two
arrays, versus (b) in place. Bit reversal reordering is a necessary part of the Fast Fourier
Transform (FFT) algorithm.

cosines to the outer loop, where they are made only log, N times. Computa-
tion of the sines and cosines of multiple angles is through simple recurrence
relations in the inner loops.

The FFT routine given below is based on one originally written by N.
Brenner of Lincoln Laboratories. The input quantities are the number of
complex data points (nn), the data array (data [1. .2*nnl),  and isign, which
should be set to either fl and is the sign of i in the exponential of equation
(12.1.7). When isign is set to -1, the routine thus calculates the inverse
transform (12.1.9) - except that it does not multiply by the normalizing
factor l/N that appears in that equation. You can do that yourself.

Notice that the argument nn is the number of complex data points.
The actual length of the real array (data[l. .2*nn])  is 2 times M, with
each complex value occupying two consecutive locations. In other words,
data[1]  is the real part of fo, data[2]  is the imaginary part of fo, and so
on up to data[2*~-I], which is the real part of f~-1, and data[2*nn]
which is the imaginary part of f~-l. The FFT routine gives back the F,,‘s
packed in exactly the same fashion, as nn complex numbers. The real and
imaginary parts of the zero frequency component Fo are in data[1]  and
data[2]  ; the smallest nonzero  positive frequency has real and imaginary
parts in data [ 3 ]  and data [4];  the smallest (in magnitude) nonzero  negative
frequency has real and imaginary parts in data [2*nn-I]  and data [2*m].
Positive frequencies increasing in magnitude are stored in the real-imaginary
pairs data[5],  data[6]  up to data[nn-I]  , data CM].  Negative frequencies
of increasing magnitude are stored in data [2*~-3] , data [2*nn-21  down to
data[nn+b]  , data[nn+4].  Finally, the pair data[nn+ll  , data[nn+2]  con-
tain the real and imaginary parts of the one aliased  point which contains the

_-----_.... /=A

I = (N  - 2)A

r=(N-  I,A

N I
2
N∆

+A (combination)

I

N∆

(a) (b)

Figure 12.2.2. Input and output arrays for FFT. (a) The input array contains N (a power
of 2) complex time samples in a real array of length 2N,  with real and imaginary parts
alternating. (b) The output array contains the complex Fourier spectrum at N values of
frequency. Real and imaginary parts again alternate. The array starts with zero frequency,
works up to the most positive frequency (which is ambiguous with the most negative fre-
quency).  Negative frequencies follow, from the second-most negative up to the frequency
just below zero.

most positive and the most negative frequency. You should try to develop a
familiarity with this storage arrangement of complex spectra, also shown in
the Figure 12.2.2, since it is the practical standard.

This is a good place to remind you that you can also use a routine like
four1  without modification even if your input data array is zero-offset, that is
has the range data [0 . .2*nn-I].  In this case, simply decrement the pointer to
data by one when four1  is invoked, e.g. four1  (data-l, 1024, 1) ;  . The real
part of fo will now be returned in data [0]  , the imaginary part in data[1],
and so on. See $1.2.

#include <math.h>

#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void four1(data,nn,isign)
float data[];
int nn,isign;
Replaces data by its discrete Fourier transform, if isign  is input as 1; or replaces  data by

1u1  times its inverse discrete Fourier transform, if isign is input as -1. data is  a complex

array of length nn, input as a real array data[1. .2*nnl.  nn MUST be an integer power  of

2 (this is not checked for!).

c
int n,mmax,m,j,istep,i;
double wtemp,wr,wpr,wpi,wi,theta;
float tempr,tempi;

Double precision for the trigonometric  recurrences.
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n=nn << 1;
j-1;
for (i=l;i<n;i+=l)  (. This IS the bit-reversal section  of the routine

if (j > i) t
SW~(dataIjl.data[il); Exchange the two  complex  numbers.

SWAP(dati[j+ll,dataCi+ll);
>
m=n >> 1;
while (m >= 2 && j > m) t

j -= m;
m >>= 1;

1
j += m;

1
mmax=2  ; Here begins the Danielson-Lanczos Section of the routine.

while (n > muax) i Outer  loop  executed log2 =  times.

istep=2*mmw;
theta=6.2S318630717969/(isign*mmax); Initialize for the trigonometric recurrence.

wtemp=sin(0.6*theta);
wpr = -2.o*wtemp*wtemp;
wpi=sin(theta);
wr4.0;
wi=O.O;
for (m=1;m<mmax;m+=2)  < Here are the two nested inner loops.

for (i=m;i<=n;i+=istep)  C
j=i+mmax; This is  the Danielson-Lanczos formula:

tempr=wr*data[j]-wi*data[j+ll;
tempi-wr*dataCj+l]+wi*dataCjl;
data[j]=data[il-tempr;
data[j+l]=data[i+ll-tempi;
data[i] += tempr;
data[i+ll += tempi;

> Tr igonometr ic  recurrence.

wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

)
mmax=istep;

>

Other FFT  Algorithms

We should mention that there are a number of variants on the basic FFT
algorithm given above. As we have seen, that algorithm first rearranges the
input elements into bit-reverse order, then builds up the output transform
in log, N iterations. In the literature, this sequence is called a decimation-
in-time or C o o l e y - T u k e y FFT algorithm. It is also possible to derive FFT
algorithms which first go through a set of log, N iterations on the input
data, and rearrange the output values into bit-reverse order. These are called
decimation-in-frequency or Sande-Tukey  FFT algorithms. For some appli-
cations, such as convolution (§12.4),  one takes a data set into the Fourier
domain and then, after some manipulation, back out again. In these cases
it is possible to avoid all bit reversing. You use a decimation-in-frequency
algorithm (without its bit reversing) to get into the “scrambled” Fourier do-
main, do your operations there, and then use an inverse algorithm (without
its bit reversing) to get back to the time domain. While elegant in principle,
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this procedure does not in practice save much computation time, since the bit
reversals represent only a small fraction of an FFT's  operations count, and
since most useful operations in the frequency domain require a knowledge of
which points correspond to which frequencies.

Another class of FFTs  subdivides the initial data set of length N not all
the way down to the trivial transform of length 1, but rather only down to
some other small power of 2, for example N = 4, base-4 FFTs,  or N = 8,
base-8 FFTs.  These small transforms are then done by small sections of
highly optimized coding which take advantage of special symmetries of that
particular small N. For example, for N = 4, the trigonometric sines and
cosines that enter are all fl  or 0, so many multiplications are eliminated,
leaving largely additions and subtractions. These can be faster than simpler
FFTs  by some significant, but not overwhelming, factor, e.g. 20 or 30 percent.

There are also FFT algorithms for data sets of length N not a power
of two. They work by using relations analogous to the Danielson-Lanczos
Lemma to subdivide the initial problem into successively smaller problems,
not by factors of 2, but by whatever small prime factors happen to divide N.
The larger that the largest prime factor of N is, the worse this method works.
If N is prime, then no subdivision is possible, and the user (whether he knows
it or not) is taking a slow Fourier transform, of order N2 instead of order
N log, N. Our advice is to stay clear of such FFT implementations, with
perhaps one class of exceptions, the Winograd Fourier transform algorithms.
Winograd algorithms are in some ways analogous to the base-4 and base-8
FFTs.  Winograd has derived highly optimized codings for taking small-N
discrete Fourier transforms, e.g., for N = 2, 3, 4, 5, 7, 8, 11, 13, 16.  The algo-
rithms also use a new and clever way of combining the subfactors. The method
involves a reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplications
in the algorithm. For some especially favorable values of N, the Winograd
algorithms can be significantly (e.g., up to a factor of 2) faster than the sim-
pler FFT algorithms of the nearest integer power of 2. This advantage in
speed, however, must be weighed against the considerably more complicated
data indexing involved in these transforms, and the fact that the Winograd
transform cannot be done “in place.”

Finally, an interesting class of transforms for doing convolutions quickly
are number theoretic transforms. These schemes replace floating point arith-
metic with integer arithmetic modulo some large prime N+l,  and the Nth
root of 1 by the modulo arithmetic equivalent. Strictly speaking, these are
not Fourier transforms at all, but the properties are quite similar and compu-
tational speed can be far superior. On the other hand, their use is somewhat
restricted to quantities like correlations and convolutions since the transform
itself is not easily interpretable as a “frequency” spectrum.

REFERENCES AND FURTHER READING:
Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algo-

rithms (New York: Springer-Verlag).
Elliott, D.F., and Rao, K.R. 1982, Fast  Transforms: Algorithms, Analy-

ses, Applications (New York: Academic Press).
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Brigham, E. Oran.  1974, The Fast  Fourier Transform (Englewood Cliffs,
N.J.: Prentice-Hall).

Bloomfield, P. 1976, Fourier Analysis of Time Series - An Introduction
(New York: Wiley).

Beauchamp, K.G. 1975, Walsh Functions and Their Applications (New
York: Academic Press) [a non-Fourier transform of recent interest].

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-
valued samples fi,  j = 0. .  .N - 1. To use fourl, we put these into a
complex array with all imaginary parts set to zero. The resulting transform
F,,  n = O . . . N - 1 satisfies F~J-,*  = F,, Since this complex-valued array
has real values for Fo  and F~J/~,  and (N/2) - 1 other independent values
Fl . . . FN,2--lr  it has the same 2(N/2  - 1) + 2 = N “degrees of freedom” as
the original, real data set. However, the use of the full complex FFT algorithm
for real data is inefficient, both in execution time and in storage required. You
would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two
separate real functions into the input array in such a way that their individual
transforms can be separated from the result. This is implemented in the
program twof f t below. This may remind you of a one-cent sale, at which you
are coerced to purchase two of an item when you only need one. However,
remember that for correlations and convolutions the Fourier transforms of two
functions are involved, and this is a handy way to do them both at once. The
second method is to pack the real input array cleverly, without extra zeros,
into a complex array of half its length. One then performs a complex FFT
on this shorter length; the trick is then to get the required answer out of the
result. This is done in the program realft below.

Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transform Fn  to handle
two real functions at once: Since the input data fj are real, the components
of the discrete Fourier transform satisfy

FN-n = (Fn)* (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the
discrete Fourier transform of a purely imaginary set of gj’s has the opposite
symmetry.

GN-~  = -(Gn)*
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Therefore we can take the discrete Fourier transform of two real functions
each of length N simultaneously by packing the two data arrays as the real
and imaginary parts respectively of the complex input array of fourl. Then
the resulting transform array can be unpacked into two complex arrays with
the aid of the two symmetries. Routine twofft works out these ideas.

void twofft(datal,data2.fftl,fft2.n~
float datal[]  .dataZ[l  .fftl[l .fft2[1 ;
int n;
Given two real input arrays data1 Cl. .nl and data2 cl.  nl , this routine calls four1 and returns
two complex output arrays, fft1  and fft2, each of complex length n (i.e. real dimensions
Cl. .2n]),  which contain the discrete Fourier transforms of the respective date n MUST
be an integer power of 2.
c

i n t  m3.nn2,jj.j;
float rep.rem.aip.aim;
void fourlO;

nn3=l+(nn2=2+n+n);
f o r  (j=l,jj=2;j<=n;j++.jj+=2) i

fftlljj-ll=datalCjl;
fftl[jj]-data2[j];

)
fourl(fftl.n.1);
fft2[11=fft1[21;
fft1[21=fft2[21=0.0;
f o r  (j=3;j<=n+l;j+=2)  <

rep=O.6*(fftiCjl+fftlhn2-jl);
rem=O.5*(fftlCjl-fftl~nn2-jl);
aip=O.5*(fftl[j+ll+fftl~nn3-jl);
aim=O.6*(fftl[j+ll-fftlb3-jl);
fftl[jl=rep;
fftl[j+ll=aim;
fftl[nn2-jl=rep;
fftl[nn3-jl = -aim;
fft2[jl=aip;
fft2Cj+ll = -rem;
fft2b2-jl=aip;
fft2b3-jl=rem;

>
1

Pack the two real arrays into one complex ar-
ray.

Transform the complex array.

U s e  symmetries to  separate the two trans-

forms.

Ship them out  in two complex arrays

What about the reverse process? Suppose you have two complex trans-
form arrays, each of which has the symmetry (12.3.1),  so that you know that
the inverses of both transforms are real functions. Can you invert both in a
single FFT? This is even easier than the other direction. Use the fact that
the FFT is linear and form the sum of the first transform plus i times the
second. Invert using four1 with isign=-1. The real and imaginary parts of
the resulting complex array are the two desired real functions.

FFT of Single Real Function

To implement the second method, which allows us to perform the FFT
of a single real function without redundancy, we split the data set in half,
thereby forming two real arrays of half the size. We can apply the program
above to these two, but of course the result will not be the transform of the
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original data. It will be a schizophrenic set of two transforms each of which
has half of the information we need. Fortunately, this is schizophrenia of a
treatable form. It works like this:

The right way to split the original data is to take the even-numbered fi
as one data set, and the odd-numbered fj as the other. The beauty of this is
that we can take the original real array and treat it as a complex array hj of
half the length. The first data set is the real part of this array, and the second
is the imaginary part, as prescribed for twofft. No repacking is required. In
other words hj = fij  +ifzj+l, j = 0.. . N/2 -  1. We submit this to fouri,
and it will give back a complex array & = FA  + iF,“, n = 0 . ..N/2-lwith

N/2-1
F; = c j-2ke2~iknlb'W

k=O

N/2--1
F," = c f2k+l e2~ik"l(N/2)

k = O

(12.3.3)

The discussion of program twofft tells you how to separate the two
transforms Fi and F,” out of H,.  How do you work them into the transform
F,, of the original data set fj?  We recommend a quick glance back at equation
(12.2.3):

F,, = F; + e2+‘lNF; n=O...N-1 (12.3.4)

Expressed directly in terms of the transform H,  of our real (masquerading
as complex) data set, the result is

F,, = ;(Hn + HN,2en*)  - ;(Hn - HN,2--n*)e2Tin’N n = 0 , . . . , N - 1

(12.3.5)

A few remarks:
?? Since FN-,* = F, there is no point in saving the entire spectrum.

The positive frequency half is sufficient and can be stored in the
same array as the original data. The operation can, in fact, be
done in place.

?? Even so, we need values H,,, n = 0.. . N/2 whereas  four1  gives
only the values n = 0.. . N/2 -  1. Symmetry to the rescue,
HN/Z = Ho.

? The values FO and FN/~  are real and independent. In order to actually
get the entire F,, in the original array space, it is convenient to
put F~f2  into the imaginary part of Fo.
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. Despite its complicated form, the process above is invertible. First
peel FN/~  out of Fo. Then construct

F:  = ;(Fn  + F;,,-,)

FO = ++‘/N(F~  _ F*
n 2 N/2--n

) n = 0 . ..N/2-1

(12.3.6)

and use  four1  to find the inverse transform of H, = Fil) + iFi2).  Surpris-
ingly, the actual algebraic steps are virtually identical to those of the forward
transform. Here is a representation of what we have said:

#include <math.h>

void realft(data,n,isign)
float data[];
int  n.isigu;
Calculates the Fourier Transform of a set of 2n  real-valued data points. Replaces this data

(which is stored in array data[l. .2n])  by the positive frequency half of its complex Fourier

Transform. The real-valued first and last components of the complex transform are returned

as elements dataI and dataC21 respectively. n must be a power of 2. This routine also
calculates the inverse transform of a complex data array if it is the transform of real data.
(Result in this case must be multiplied by l/n.)
t

int i.il.i2,i3,i4,n2p3;
float cl=0.6,c2.hlr,hli,h2r.hai;
double wr,wi.wpr.wpi.wtemp,theta;
void tourl();

theta=3.141692663689793/(doub1e)  n;
if (isigu == I) t

c2 = -0.6;
fourl(data.n.1);

1 else c
c2=0.6;
theta = -theta;

>
wt&p=sin(O.S*theta);
wpr = -2.o*wtemp*wtemp:
wpi=sin(theta);
wr=l.O+wpr;
wi=wpi  ;
n2p3=2*n+3;
for (i=2;i<=n/2;i++)  t

i4=l+(i3-n2p3-(i2=l+(ii=i+i-i)));
hlr=cl*(data[ill+data[i31);
hli-cl*(data[i21-dataCl41);
h2r = -c2*(dataCi2l+dataCi41);
h2i=c2*(data[ill-data[i31);
data[il]lhlr+wr*h2r-wi*h2i;
data[i2]=hli+wr*h2i+wi*h2r;
data[i3]=hlr-wr*h2r+rri*hai;
data[i4]  = -hli+wr*h2i+wi*h2r;
wr=(wtemp=wr)*npr-wi**pi+*r;
wi=wi*wpr+wtemp*wpi+ui;

1
if (isign == I) <

Double precision for the trigonometric  recur-

rences.

Initialize the recurrence.

The forward transform is here.

Otherwise set u p  for an inverse transform.

Case ~=1  done separately below.

The t w o  separate transforms are separated

out of data. 

Here they are recombined to  form the true

transform of the original real data.

The recurrence.
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d&all]  = (hlr=data~l~)+data[21  ;
data[2]  = hlr-dataC21;

) e l s e  I

Squeeze the first and last  data together to  get

them all within The original array.

data[l]=cl*((hlr=data[il)+data[21);
data[21=cl*(hirdata[2~)  ;
fourl(data.n,-1); This is the inverse transform for the case  isip=-l

>
1

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used
to solve differential equations (see Chapter 17). The most common boundary
conditions for the solutions are 1) they have the value zero at the boundaries,
or 2) their derivatives are zero at the boundaries. In these instances, two
more transforms arise naturally, the sine transform and the cosine transform,
given by

N - l

Fk  = c fj sin(?rjk/N)
j=l

N - l

Fk  = c fj COS(Sjk/N)

j=o

sine transform

cosine transform

(12.3.7)

where fj,  j = 0.. .N-1 is the dataarray.
At first blush these appear to be simply the imaginary and real parts

respectively of the discrete Fourier transform. However, the argument of the
sine and cosine differ by a factor of two from the value that would make that
so. The sine transform uses sines only as a complete set of functions in the
interval from 0 to 27r,  and the cosine transform uses cosines only. By contrast,
the normal FFT uses both sines and cosines. (See Figure 12.3.1.)

However, the sine and cosine transforms can be “force-fit” into a form
which allows their calculation via the FFT. The idea is to extend the given
function rightward past its last tabulated value. In the case of the sine trans-
form, we extend the data to twice their length in such a way as to make them
an odd function about j = N, with fN = 0,

f2N-j  = -fj j=O,...,N-I

When a FFT is performed on this extended function, it reduces to the sine
transform by symmetry:

2N-1
Fk  = c fje2MW’J)

j=o
(12.3.9)

12.3 FFT of Real Functions, Sine and Cosine Transforms

Figure 12.3.1. Basis functions used by the Fourier transform (a), sine transform (b), and
cosine transform (c), are plotted. The first five basis functions are shown in each case. (For
the Fourier transform, the real and imaginary parts of the basis functions are both shown.)
While some basis functions occur in more than one transform, the basis sets are distinct.
For example, the sine transform functions labeled (1),  (3),  (5) are not present in the Fourier
basis. Any of the three sets can expand any function in the interval shown; however the
sine or cosine transform best expands functions matching the boundary conditions of the
respective basis functions, namely zero function values for sine, zero derivatives for cosine.

The half of this sum from j = N to j = 2N - 1 can be rewritten with the
substitution j = 2N - j

2N-1
c fje2nijk/(2N) = 2 f2N--j,e2ri(2N-f)kl(2N)

j=N j‘=l

N - l
= _ 2 fj,e-W’klW)

j’=O

(12.3.10)

- 
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so that

N - l
Fk = c fj  [,pijkl(W  _ ,-‘JNWW)]

j = O

N - l

= 2i C fj sin(?rjk/N)
j = 0

(12.3.11)

Thus, up to a factor 2i we get the sine transform from the FFT of the ex-
tended function. The same procedure applies to the cosine transform with
the exception that the data are extended as an even function.

In both cases, however, this method introduces a factor of two ineffi-
ciency into the computation by extending the data. This inefficiency shows
up in the FFT output, which has zeros for the real part of every element
of the transform (for the sine transform). For a one-dimensional problem,
the factor of two may be bearable, especially in view of the simplicity of the
method. When we work with partial differential equations in two or three
dimensions, though, the factor becomes four or eight, so we are inspired to
eliminate the inefficiency.

From the original real data array fj we will construct an auxiliary array gj
and apply to it the routine realft. The output will then be used to construct
the desired transform. For the sine transform of data fj, j = 1,. . . , N the
auxiliary array is

Yo = 0

Yj = sin(jr/N)(fj i- fN-j)  i- i(fj - fN-j) (12.3.12)

j=l,...,N-1

This array is of the same dimension as the original. Notice that the first term
is symmetric about j = N/2 and the second is antisymmetric. Consequently,
when realft is applied to yj, the result has real parts Rk and imaginary
part8 Ik given by

N - l

&  = c Yj cos(2xjk/N)
j=O

N - l

= c (fj + f~-j) sin(jn/N)  cos(2rjk/N)
j=l

N - l

= c 2fj  sin(jz/N) cos(2njklN)
j=O
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= y fj  {sin(yjr) - sin(yjr))}
j=O

= h/c+1  - Fsk--1
N - l

Ik  = c ?Ji sin(2rjklN)
j=O

N - l

= c (fj - fN-j):  sin(27rjk/N)
j=l

N - l

= c fjsin(2?rjk/N)
j=O

= F2k

Therefore Fk can be determined as follows,

F-k = Ik Fzc+l = pa-1 + Rk k = 0,. . . , (N/2 - 1)

(12.3.13)

(12.3.14)

(12.3.15)

The even terms of Fk are thus determined very directly. The odd terms require
a recursion, the starting point of which is

N - l

FI =  C f j  sin(jr/N) (12.3.16)
j = O

The implementing program is

#include  <math.h>

void sinft(y.n)
float y[I;
int II;
Calculates the sine transform of a set of n real-valued data points stored in array yC1. .nl
The number n must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.
t

int  j,m=n/2.n2=n+2;
float sum.yl.y2;
double theta.wi=O.O,wr=l.O,wpi,wpr,wteap;
void realf  t 0  ;

D o u b l e  p r e c i s i o n  i n  t h e  t r i g o n o m e t r i c

recurrences.

theta=3.1416926635897Q/(dauble)  n;
wtemp=sin(O.S*theta);

Initialize the recurrence.

wpr  = -2.o*wtemp*wtemp;
wpi=sin(theta)  ;
yCll-0.0;
for (j=2; j<=m+l;  j++) <

wr=(wtemp=ur)*wpr-wi*wpi+wr; Calculate the sine for the auxiliary array.
wi=wi*wpr+wtemp*wpi+wi; The cosine is needed to  continue the recurrence.
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yl=wi*(yCjl+yln2-jl);
y2=0.6*(yCjl-yCn2-jl);
yCjl=yl+y2;
yCn2-jl=yl-y2;

)
realft(y.m.1);
yCll*=O.6;
sum=y121=0.0;
for (j-l;jC=n-l;j+=2)  (

Construct the auxiliary array. 

Terms  j  and N - j are related

Transform the auxiliarY  arraY.

Initialize  the sum used for odd terfllS  below.

Am +I yCj1;
ycj1=ycj+11;
y[j+il=Bllm;

>

Even terms in the transform are determined directly.
Odd terms are determined by  this  running sum.

The sine transform, curiously, is its own inverse. If you apply it twice, you
get the original data, but multiplied by a factor of N/2.

The cosine transform is slightly more difficult, but the idea is the same.
Now, the auxiliary function is

YO = fo y/j  = i(fj + f,v+) - sin(jr/N)(fj  -  fnr-j)

and the same analysis leads to

F2k = Rk hk+r  =  be--1  +  Ik k = 0, . . , (N/2 - 1)

The starting value for the recursion in this case is

N-l
Fl  = c fj cos(jn/N)

(12.3.17)

(12.3.18)

(12.3.19)
j=o

This sum does not appear naturally among the & and Ik, and so we accu-
mulate it during the generation of the array yi.

An additional complication is that the cosine transform is not its own
inverse. To derive the inverse of an array Fk, we first compute an array fi  as
if the transform were its own inverse,

N - l

5 = c Fk cos(dd/N)
k=O

(12.3.20)
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One easily verifies the relations between 5 and the desired inverse fi,

&=Nfo+  c f,
jodd

for 1 odd (12.3.21)

j odd
for 1 even, 1# 0

The unknown sums on the right of these equations are determined as follows

G = c fl=;  fo+Nc  fj
1 even

( )j=o

.,N-1
C2SCr;2Cfi

1 odd j=o

It follows that

;fo=c1-c2

(12.3.22)

(12.3.23)

c fj = JJ  - 2(Cl - C2) c fj = 32 - c fj (12.3.24)
jodd j even jodd

Knowing these sums, the desired fj are now easily recovered from equation
(12.3.21). This is implemented in the following routine.

#include Cmath.h>

void cosft(y,n,isign)
f l o a t  y[I;

i n t  n.isign;
CalCulateS  the cosine transform of a set y[i.  .nl  of real-valued data points. The transformed

data replace the original data in array y. n must be a power of 2. Set isign to +l  for a

transform, and to  -1 for an inverse transform. For an inverse transform, the output array
should be multiplied by 2/n.

<

int j,m,n2;
float enfO,even.odd,sum.sume.sumo.yi.y2;
d o u b l e  theta.wi=O.O,rr=l.O,wpi,wpr,wtemp;
void malito;

theta=3.1416926636897B/(double)  II;

Double precision for the trigonomet-

ric recurrences.

lnitlalize  the recurrence.
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wtemp=sin(O.S*theta);
w= = -2.O*wtemp*rtemp;
wpi=sin(theta);
sum=y 111 :
mitt  >> 1;
n25n+2  ;

f o r  ( j - 2 ;  j<=n;  j++)  < jl+t  unnecessary since ~Cn/Z+ll  unchanaed.

wr=(*temp=ur)*vpr-wi*vpi+wr; Carry out  the recurrence.

wi=wi*wpr+wtemp*wpi+wi;
yi=o.6*(yCjl+yCn2-j1); Calculates the auxiliary function.

y2-(ycjl-yCn2-jl);
yCjl=yl-wi*y2; The values for I and N -  J are related.

yCn2-jl=yl+wi*y2;
sum  +=  wr*y2; Carry along this sum for later use in unfoldina  the transform.

1
realft(y,m.l); Calculate the transform of the auxlllary  function.

yt21-sum; sum  is the value in equation (12.3.19).

f o r  (j=4;j<=n;j+=2)  I

sum += y[jl; Equation (12.3.18).

yCjl=sum;
1
i f  (isign  == -1) { This  Code applies  only to the inverse transform.

even=y Cl1 :
odd=y I21 ;
f o r  (j=3;j<=wi;j+=2)  <

???????= yCj1; Sum  up the even and odd transform values as in equation (12.3.22).

odd += yCj+ll;
>
enf0=2.0*(even-odd);
stmo=y Cl]  -enfO; Next. implement equation (12.3.24).

sume=(2.0*odd/n)-sumo;
y[l]=O.6*emfO;
y Cal -= some;
f o r  (j=3;j<-rl;j+‘2)  c

yljl - -  8~0; Finally.  equation (12.3.21) gives us the true inverse cosine tra”S-

yCj+ll  -= eume; form (excepting  the factor 2/N).

)
)

1
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12.4 Convolution and Deconvolution Using
the FFT

We have defined the convolution of two functions for the continuous
case in equation (12.0.8),  and have given the convolution theorem as equa-
tion (12.0.9). The theorem says that the Fourier transform of the convolution
of two functions is equal to the product of their individual Fourier transforms.
Now, we want to deal with the discrete case. We will mention first the context
in which convolution is a useful procedure, and then discuss how to compute
it efficiently using the FFT.

The convolution of two functions r(t) and s(t), denoted I * s, is mathe-
matically equal to their convolution in the opposite order, s * r. Nevertheless,
in most applications the two functions have quite different meanings and char-
acters. One of the functions, say s, is typically a signal or data stream, which
goes on indefinitely in time (or in whatever the appropriate independent vari-
able may be). The other function r is a “response function,” typically a peaked
function that falls to zero in both directions from its maximum. The effect of
convolution is to smear the signal s(t) in time according to the recipe provided
by the response function r(t), as shown in Figure 12.4.1. In particular, a spike
or delta-function of unit area in s which occurs at some time to  is supposed
to be smeared into the shape of the response function itself, but translated
from time 0 to time to  as  r(t - to).

In the discrete case, the signal s(t) is represented by its sampled values at
equal time intervals sj. The response function is also a discrete set of numbers
rk,  with the following interpretation: ro  tells what multiple of the input signal
in one channel (one particular value of j) is copied into the identical output
channel (same value of j); rl tells what multiple of input signal in channel j
is additionally copied into output channel j + 1; ~-1  tells the multiple that is
copied into channel j - 1; and so on for both positive and negative values of
k in rk.  Figure 12.4.2 illustrates the situation.

Example: a response function with ro  = 1 and all other Q’s equal to zero
is just the identity filter: convolution of a signal with this response function
gives identically the signal. Another example is the response function with
~4  = 1.5 and all other ?-k’s equal to zero. This produces convolved output
which is the input signal multiplied by 1.5 and delayed by 14 sample intervals.

Evidently, we have just described in words the following definition of
discrete convolution with a response function of finite duration M:

M/2
(r* s)j  E c Sj-k rk (12.4.1)

k=--M/2+1

If a discrete response function is nonzero  only in some range -M/2 < k <
M/2, where M is a sufficiently large even integer, then the response function
is called a finite impulse response (FIR), and its duration is M. (Notice that
we are defining M as the number of nonzero  values of rk;  these values span
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Figure 12.4.1. Example of the convolution of two functions. A signal s(t) is convolved with
a response function r(t). Since the response function is broader than some features in the
original signal, these are “washed out” in the convolution. In the absence of any additional
noise, the process can be reversed by deconvolution.

r, 1
0 N -  1

I I

P-J, 111

P I’ N - lI
Figure 12.4.2. Convolution of discretely sampled functions. Note how the response function
for negative times is wrapped around and stored at the extreme right end of the array rk.
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a time interval of M - 1 sampling times.) In most practical circumstances
the case of finite M is the case of interest, either because the response really
has a finite duration, or because we choose to truncate it at some point and
approximate it by a finite-duration response function.

The discrete convolution theorem is this: If a signal sj is periodic with
period N, so that it is completely determined by the N values so,. . . , sN-1,
then its discrete convolution with a response function of finite duration N is
a member of the discrete Fourier transform pair,

c sj-k rk e SnR,
k = - N / 2 + 1

(12.4.2)

Here S’,,  (n = 0,. . . , N - 1) is the discrete Fourier transform of the values
Sj, (j = O,..., N - 1), while &,  (n = 0,. . . , N - 1) is the discrete Fourier
transform of the values rk,  (k  = 0, . . . , N -  1). These values of rk  are the
same ones as for the range k = -N/2 + 1,. . . , N/2, but in wrap-around order,
exactly as was described at the end of $12.2.

Treatment  of End Effects by Zero Padding

The discrete convolution theorem presumes a set of two circumstances
which are not universal. First, it assumes that the input signal is periodic,
whereas real data often either go forever without repetition or else consist
of one non-periodic stretch of finite length. Second, the convolution theorem
takes the duration of the response to be the same as the period of the data;
they are both N. We need to work around these two constraints.

The second is very straightforward. Almost always, one is interested in
a response function whose duration M is much shorter than the length of
the data set N. In this case, one simply extends the response function to
length N by padding it with zeros, i.e. defining rk  = 0 for M/2 5 k 5 N/2
and also for -N/2 + 1 5 k 5 -M/2 + 1. Dealing with the first constraint
is more challenging. Since the convolution theorem rashly assumes that the
data are periodic, it will falsely “pollute” the first output channel (r * s)o  with
some wrapped-around data from the far end of the data stream sN-.r  , 8N-2,
etc. (See Figure 12.4.3.) So, we need to set up a buffer zone of zero-padded
values at the end of the ej vector, in order to make this pollution zero. How
many zero values do we need in this buffer? Exactly as many as the most
negative index for which the response function is n o n z e r o . For example, if r-s
is nonzero,  while r-4, r-s,. . . are all zero, then we need three zero pads at the
end of the data: SN-3  = a#-2 = sN-l  = 0. These zeros will protect the first
output channel (r * s)o  from wraparound pollution. It should be obvious that
the second output channel (r * s)i  and subsequent ones will also be protected
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- r e s p o n s e  f u n c t i o n

I I
-In  r - - - m - -

spoiled ~-unspoiled- spoi led

Figure 12.4.3. The wraparound problem in convolving finite segments of a function. Not
only must the response function wrap be viewed as cyclic, but so must the sampled original
function. Therefore a portion at each  end of the original function is erroneously wrapped
around by convolution with the response function.

by these same zeros. Let K denote the number of padding zeros, so that the
last actual input data point is SN-~-1.

What now about pollution of the very last  output channel? Since  the data
now end with SN-~-1,  the last  output channel of interest is (r * S)N-~-1.

This channel can be polluted by wrap around from input channel so unless
the number K is also large enough to take care of the most positive index k
for which the response function rk  is nonzero. For example, if ro  through rs
are nonzero, while r7,nJ.  .  . are all zero, then we need at least K = 6 padding
zeros at the end of the data: SN-6 = . . . = SN-~ = 0.

To summarize - we need to pad the data with a number of zeros on one
end equal to the maximum positive duration or maximum negative duration of
the response function, whichever is larger. (For a symmetric response function
of duration M, you will need only M/2 zero pads.) Combining this operation
with the padding of the response rk  described above, we effectively insulate the
data from artifact8 of undesired periodicity. Figure 12.4.4 illustrates matters.

Use of FFT for Convolution

The data, complete with zero padding, are now a set of real number8
Sj, j  = 0 , . . . , N -  1, and the response function is zero padded out to du-
ration N  and arranged in wrap-around order. (Generally this means that a
large contiguous section of the rk’s,  in the middle of that array, is zero, with
nonzero values clustered at the two extreme ends of the array.) You now com-
pute the discrete convolution as follows: Use the FFT algorithm to compute
the discrete Fourier transform of s and of r. Multiply the two transform8
together component by component, remembering that the transforms consist
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r e s p o n s e  f u n c t i o n

--m.- --m--------c

Figure 12.4.4. Zero padding as  solution to the wraparound problem. The original function
is extended by zeros,  serving a dual purpose:  when the zeros wrap around, they do not
disturb the true convolution; and while the original function wraps around onto the zero
region, that region can be discarded.

of complex numbers. Then use the FFT algorithm to take the inverse discrete
Fourier transform of the products. The answer is the convolution r * s.

What about deconvolution? Deconvolution is  the process of undoing the
smearing in a data set which has occurred under the influence of a known
response function, for example, due to the known effect of a less-than-perfect
measuring apparatus. The defining equation of deconvolution is the same as
that for convolution, namely (12.4.1),  except now the left-hand side is taken
to be known, and (12.4.1) is to be considered as a set of iV  linear equations
for the unknown quantities Sj.  Solving these simultaneous linear equations in
the time domain of (12.4.1) is unrealistic in most cases, but the FFT render8
the problem almost trivial. Instead of multiplying the transform of the sig-
nal and response to get the transform of the convolution, we just divide the
transform of the (known) convolution by the transform of the response to get
the transform of the deconvolved signal.

This procedure can go wrong mathematically  if the transform of the re-
sponse function is exactly zero for some  value ELI(,  so that we can’t divide by
it. This indicates that the original convolution has truly lost all information
at that one frequency, 80 that a reconstruction of that frequency component
is not possible. You should be aware, however, that apart from mathemati-
cal problems, the process of deconvolution has other practical shortcomings.
The process is generally quite sensitive to noise in the input data, and to the
accuracy to which the response function rk  is known. Perfectly reasonable
attempts at deconvolution can sometimes produce nonsense for these reasons.
In such cases you may want to make use of the additional process of optimal
filtering, which is discussed in $12.6.

Here is our routine for convolution and deconvolution, using the FFT
as implemented in four1 of $12.2. Since the data and response functions
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are real, not complex, both of their transforms can be taken simultaneously
by the technique described in S12.3. The routine thus makes just one call
to compute an FFT and one call to compute an inverse FFT. The data are
assumed to be stored in a float array data [I.  . n]  , with n an integer power of
two. The response function is assumed to be stored in wraparound order in
a sub-array respns [  1. . m] of the array respns [I.  . n] . The value of m can be
any odd integer less than or equal to n,  since the first thing the program does
is to recopy the response function into the appropriate wrap around order in
respns cl. . n]  . The answer is provided in ans.

static float sqrarg;
#define SQR(a) (sqrarg=(a).sqrarg*sqrargl

void convlv(data.n,respns,m.isign,ans~
float dataCl.respnsCl.ansCl;
int n.m,isign;
Convo lves  or  deconvo lves  a  rea l  da ta  se t  data[l. .a]  ( including any user-suppl ied zero padding)
wi th  a  response funct ion respns [i.  .n] The response funct ion must  be  stored in  wrap around
order in the first m  elements of respns, where m  is an odd integer 5 II. Wrap around order
means  tha t  the  f i rs t  ha l f  o f  the  a r ray  respns conta ins  the  impulse  response funct ion  a t  pos-
itive times, while the second half of the array contains the impulse response f u n c t i o n at
negative times, counting down from the highest element respnsbl.  On input isip  is  i-l
for convolution, -1 for deconvolution. The answer is returned in the first  a COmpOnentS  of
BPS.  However, ene  must be supplied in the calling program with dimensions Cl. .2*nl.  for
consistency with twofft. II MUST be an integer power of NVO.
c

int i.no2;
float dum,magZ.*fft,*vector(l;
void twofft().realft().nrerror(),free_vector(l;

fft=vector(l,Z*nl;
for (i=l;i<=(m-l)/Z;i++l

respns[n+l-il=respns[m+l-11;
for (i=(m+3)/2;i<=n-(m-l)/?;i++)

respns[il=O.O;

Put respns in array of length  1.

Pad with zeros.

twofft(data,respns,fft,ans.n);
noa=n/a  ;
for (1=2;i<=n+2;1+=2)  i

if (isign == 11 I

FFT both at once.

ans[i-ll=(fft[i-ll*(dum=ans[i-ll~-fftCil*ansCil~/no2; Multiply FFTs
ans[il=(fft[il*dum+fft[i-ll*ansCil)/no2; to convolve.

) else if (isign == -11 (.
if ((mag2=SQR(ansCi-1l)+SQR(ansCil11  == 0.01

nrerror("Deconvolving  at response zero in CONVLV");
ans[i-i]=(fft[i-l]~(dumtans[i-ll)+fft[il*sns~ill/mag2/n02;  Divide FFTs
ansCil=(fft[il*dum-fft[i-il*ansCil)/mag2/no2; to deconvolve.

) else nrerror("No  meaning for ISICN in CONVIA'");
)
ansc2l=ansCn+ll; Pack last  element with  first for realft.

realft(ans.noZ,-1); inverse  transform back to time domain.
free_vector(fft.i.Z*nl;

)

Convolving or Deconvolving Very Large Data Sets

If your data set is so long that you do not want to fit it into memory all
at once, then you must break it up into sections and convolve each section
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separately. Now, however, the treatment of end effects is a bit different. You
have to worry not only about spurious wraparound effects, but also about
the fact that the ends of each section of data should have been influenced by
data at the nearby ends of the immediately preceding and following sections
of data, but were not so influenced since only one section of data is in the
machine at a time.

There are two, related, standard solutions to this problem. Both are
fairly obvious, so with a few words of description here, you ought to be able
to implement them for yourself. The first solution is called the overlap-save
method. In this technique you pad only the very beginning of the data with
enough zeros to avoid wrap around pollution. After this initial padding, you
forget about zero padding altogether. Bring in a section of data and convolve
or deconvolve it. Then throw out the points at each end that are polluted
by wrap around end effects. Output only, the remaining good points in the
middle. Now bring in the next section of data, but not all new data. The
first points the next section are to overlap points from the preceding section
of data. The sections are to be overlapped sufficiently so that the polluted
output points at the end of one section are recomputed as the first of the
unpolluted output points from the subsequent section. With a bit of thought
you can easily determine how many points to overlap and save.

The second solution, called the overlap-add method, is illustrated in Fig-
ure 12.4.5. Here you don’t overlap the input data. Each section of data is
disjoint from the others and is used exactly once. However, you carefully
zero-pad it at both ends so that there is no wrap-around ambiguity in the
output convolution or deconvolution. Now you overlap and add these sections
of output. Thus, an output point near the end of one section will have the
response due to the input points at the beginning of the next section of data
properly added in to it, and likewise for an output point near the beginning
of a section, mutatis mutandis.

Even when computer memory is available, there is some slight gain in
computing speed in segmenting a long data set, since the FFTs'  Nlog,  N  is
slightly slower than linear in N. However, the log term is so slowly varying
that you will often be much happier to avoid the bookkeeping complexities of
the overlap-add or overlap-save methods: if it is practical to do so, just cram
the whole data set into memory and FFT away. Then you will have more
time for the finer things in life, some of which are described in succeeding
sections of this chapter.
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Figure 12.4.5. The overlapadd method for convolving a response with a very long signal.
The signal data is broken up into smaller pieces. Each is zero padded at both ends and
convolved (denoted by bold arrows in the figure). Finally the pieces are added back together,
including the overlapping regions formed by the zero pads.

12.5 Correlation and Autocorrelation Using
the FFT

Correlation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functions that go into a correlation
are not as conceptually distinct as were the data and response functions which
entered into convolution. Rather, in correlation, the functions are represented
by different, but generally similar, data sets. We investigate their “correla-
tion,” by comparing them both directly superposed, and with one of them
shifted left or right.

We have already defined in equation (12.0.10) the correlation between
two continuous functions g(t) and h(t),  which is denoted Corr(g,  h), and is a
function of lag t. We will occasionally show this time dependence explicitly,
with the rather awkward notation Corr(g, h)(t).  The correlation will be large
at some value of t if the first function (g) is a close copy of the second (h)
but lags it in time by t, i.e., if the first function is shifted to the right of the
second. Likewise, the correlation will be large for some negative value of t
if the first function leads the second, i.e., is shifted to the left of the second.
The relation that holds when the two functions are interchanged is

Corr(g,  h)(t)  = Corr(h,  g)(-t) (12.5.1)

The discrete correlation of two sampled functions gk  and hk,  each periodic
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with period N, is defined by

N - l

Co+7,h)j  = c gj+khk
k=Q

(12.5.2)

The discrete correlation theorem says that this discrete correlation of two real
functions g and h is one member of the discrete Fourier transform pair

cOIT(g, h)i  ++ Gk&* (12.5.3)

where Ck and Hk are the discrete Fourier transforms of gj  and hi,  and asterisk
denotes complex conjugation. This theorem makes the same presumptions
about the functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data
sets, multiply one resulting transform by the complex conjugate of the other,
and inverse transform the product. The result (call it rk) will formally be a
complex vector of length N. However, it will turn out to have all its imaginary
parts zero since the original data sets were both real. The components of rk
are the values of the correlation at different lags, with positive and negative
lags stored in the by now familiar wraparound order: The correlation at zero
lag is in ro,  the first component; the correlation at lag 1 is in ri, the second
component; the correlation at lag -1 is in rN-1,  the last component; etc.

Just as  in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem.
Here again, we can use zero padding.  If you are interested in the correlation
for lags as large as fK,  then you must append a buffer zone of K zeros at
the end of both input data sets. If you want all possible lags from N data
points (not a usual thing), then you will need to pad the data with an equal
number of zeros; this is the extreme case. So here is the program:

void correl(datal.data2,n.ans)
float data1 [I , data2 [I , ans  [I ;
int n;
Computes the correlation of two real data sets data1 Cl. .nl and data2Il.  .=I, each of length
n ( including any user-suppl ied zero padding) .  n MUST be an in teger  power  of  two.  The answer
is returned as the first n points in anscl. .2*nl  stored in wraparound order, i.e. correlations
at increasingly negative lags are in aneCn1  on down to any  Cn/2+11,  while correlations at
increasingly positive lags are in ens [ll (zero lag) on up to an8  [n/21.  Note that en8  must
be supplied in the calling program with length at least 2*n.  since it is also used as working
space. Sign convention of this routine: if data1 lags data2,  i.e.  is shi f ted  to the right of it,
then ans  will show a peak at positive lags.
<

int no2.i;
float dum,*fft.*vector();
void trofft().realftO,free-vector0;

fft=vector(l,2*n);
tnofft(datai.data2.fft.ans.n); Transform both data vectors at once.
no2=n/2  ; Normalization for inverse FFT.
for (i=2;i<=n+2;i+-2)  t

an~Ci-il=~fftti-ll*~dum=ansCi-1l~+fft~il*ansC1l~/no2; Multiply to  find FFT

o f  their c o r r e l a t i o n .
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ans[i]=(fft[i]*dum-fftci-l]*ansCi])/no2;
1
ens Cal  ‘11118  In+11  ; Pack first  and  last  into one element

realftbns,n02.-1); inverse transform gives correlation.

free_vector(fft.i,2*n);
>

The discrete autocorrelation of a sampled function gj is just the discrete
correlation of the function with itself. Obviously this is always symmetric with
respect to positive and negative lags. Feel free to use the above routine corre1
to obtain autocorrelations, simply calling it with the same data vector in both
arguments. If the inefficiency bothers you, routine realft can, of course, be
used to transform the data vector instead.

REFERENCES AND FURTHER READING:
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12.6 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing which are
routinely handled with Fourier techniques. One of these is filtering for the
removal of noise from a “corrupted” signal. The particular situation we con-
sider is this: There is some underlying, uncorrupted signal u(t)  that we want
to measure. The measurement process is imperfect, however, and what comes
out of our measurement device is a corrupted signal c(t). The signal c(t) may
be less than perfect in either or both of two respects. First, the apparatus
may not have a perfect “delta-function ” response, so that the true signal u(t)
is convolved with (smeared out by) some known response function r(t) to give
a smeared signal s(t),

r(T)u(t - 7) dr  or S(f) = R(f)U(f) (12.6.1)

where S, R, U are the Fourier transforms of s, T,  u respectively. Second, the
measured signal c(t) may contain an additional component of noise n(t),

c(t) = s(t) + n(t) (12.6.2)

We already know how to deconvolve the effects of the response function
r in the absence of any noise (S12.4); we just divide C(f) by R(f) to get a
deconvolved signal. We now want to treat the analogous problem when noise
is present. Our task is to find the optimal filter, 4(t)  or @(f)  which, when
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applied to the measured signal c(t) ,or  C(f), and then deconvolved by r(t)
or R(f), produces a signal ii(t)  or U(f)  that is as close as possible to the
uncorrupted signal u(t)  or U(J).  In other words we will estimate the true
signal U by

fi(f) = C(f)@(f)
R(f)

(12.6.3)

In what sense is 6 to be close to U? We ask that they be close in the
least-square sense

IO” Iii(t) - u(t)12  dt = 1-1  l@f, - Vfli2  df is minimized. (12.6.4)
-co

Substituting equations (12.6.3) and (12.6.2),  the right-hand side of (12.6.4)
becomes

I IDo  [s(f)+N(f)l’(f)  ‘(f) 2 df- -
R(f) R(f) (12.6.5)

= i: IRCfIl-2  (IS(  II- @(f)12  + INf)12  lWf12}  df

The signal S and the noise N are uncorrelated, so their cross product, when
integrated over frequency f gave zero. (This  is practically the definition of
what we mean by noise!). Obviously (12.6.5) will be a minimum if and only
if the integrand is minimized with respect to @(f)  at every value of f. Let us
search for such a solution where @(f)  is a real function. Differentiating with
respect to 9, and setting the result equal to zero gives

IS(f )I2
‘(f)  = IS(f  )I2  + INf  )I2

(12.6.6)

This is the formula for the optimal filter a(f).
Notice that equation (12.6.6) involves S, the smeared signal, and N, the

noise. The two of these add up to be C, the measured signal. Equation
(12.6.6) does not contain U the “true” signal. This makes for an important
simplification: The optimal filter can be determined independently of the
determination of the deconvolution function that relates S and U.

To determine the optimal filter from equation (12.6.6) we need some way
of separately estimating ISI  and INIT.  There is no way to do this from the
measured signal C alone without some other information, or some assumption
or guess. Luckily, the extra information is often easy to obtain. For example,
we can sample a long stretch of data c(t) and plot its power spectral density
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Figure 12.6.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise shows
a signal peak added to a noise tail. The tail is extrapolated back into the signal region as a
“noise model.” Subtracting gives the “signal model.” The models need not be accurate for
the method to be useful. A simple algebraic combination of the models gives the optimal
filter (see text).

using equations (12.0.14),  (12.16) and (12.1.5). This quantity is proportional
to the sum ]S]’ + ]N12,  so we have

IS( + IWf)12  = PC(f) = lW)12 Olf <fc (12.6.7)

(More sophisticated methods of estimating the power spectral density will
be discussed in $512.7  and 12.8, but the estimation above is almost always
good enough for the optimal filter problem.) The resulting plot (see Figure
12.6.1) will often immediately show the spectral signature of a signal sticking
up above a continuous noise spectrum. The noise spectrum may be flat,
or tilted, or smoothly varying; it doesn’t matter, as long as we can guess a
reasonable hypothesis as to what it is. Draw a smooth curve through the noise
spectrum, extrapolating it into the region dominated by the signal as well.
Now draw a smooth curve through the signal plus noise power. The difference
between these two curves is your smooth “model” of the signal power. The
quotient of your model of signal power to your model of signal plus noise
power is the optimal filter  a(j).  [Extend it to negative values of j by the
formula @(-j)  = a(j).] Notice that Q(j)  will be close to unity where the
noise is negligible, and close to zero where the noise is dominant. That is how
it does its job! The intermediate dependence given by equation (12.6.6) just
turns out to be the optimal way of going in between these two extremes.

Because the optimal filter results from a miniiization problem, the qual-
ity of the results obtained by optimal filtering differs from the true optimum
by an amount that is second order in the precision to which the optimal fil-
ter is determined. In other words, even a fairly crudely determined optimal
filter (sloppy, say, at the 10 percent level) can give excellent results when it
is applied to data. That is why the separation of the measured signal C into
signal and noise components S and N can usefully be done “by eye” from a
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crude plot of power spectral density. All of this may give you thoughts about
iterating the procedure we have just described. For example, after designing
a filter with response @(j)  and using it to make a respectable guess at the
signal o(j)  = @( j)C(  j)/R(  j), you might turn about and regard c(j)  as a
fresh new signal which you could improve even further with the same filtering
technique. Don’t waste your time on this line of thought. The scheme con-
verges to a signal of S(j) = 0. Converging iterative methods do exist; this
just isn’t one of them.

You can use the routine four1 ($12.2) or realft (512.3) to FFT your
data when you are constructing an optimal filter. To apply the filter  to your
data, you can use the methods described in $12.4.  The specific routine convlv
is not needed for optimal filtering, since your filter is constructed in the fre-
quency domain to begin with. If you are also deconvolving your data with
a known response function, however, you can modify convlv to multiply by
your optimal filter just before it takes the inverse Fourier transform.

REFERENCES AND FURTHER READING:
Rabiner, L.R., and Gold B. 1975, Theory and Application of Digital Signal

Processing (Englewood Cliffs, N.J.: Prentice-Hall).
Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algo-

rithms (New York: Springer-Verlag).
Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analy-

ses, Applications (New York: Academic Press).

12.7 Power Spectrum Estimation Using the FFT

In the previous section we “informally” estimated the power spectral den-
sity of a function c(t) by taking the modulus-squared of the discrete Fourier
transform of some finite, sampled stretch of it. In this section we’ll do roughly
the same thing, but with considerably greater attention to details. Our at-
tention will uncover some surprises.

The first detail is power spectrum (also called a power spectral density
or PSD) normalization. In general there is some relation of proportionality
between a measure of the squared amplitude of the function and a measure of
the amplitude of the PSD. Unfortunately there are several different conven-
tions for describing the normalization in each domain, and many opportunities
for getting wrong the relationship between the two domains. Suppose that
our function c(t) is sampled at N points to produce values ce  . . . c~-l,  and
that these points span a range of time T? that is T = (N - l)A, where A
is the sampling interval. Then here are several different descriptions of the
total power:

N - l

C lCj12 E “sum squared amplitude” (12.7.1)
j=O
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1 T
I

N - l

To
lc(t)12  dt M $ c Icj12  ss “mean squared amplitude” (12.7.2)

j=o

IT lc(t)12  dt M  A Nc  Ici12 = “time-integral squared amplitude” (12.7.3)
0 j=o

PSD estimators, as we shall see, have an even greater variety. In this
section, we consider a class of them that give estimates at discrete values of
frequency f;, where i will range over integer values. In the next section, we
will learn about a different class of estimators that produce estimates that are
continuous functions of frequency f. Even if it is agreed always to relate the
PSD normalization to a particular description of the function normalization
(e.g. 12.7.2),  there are at least the following possibilities: The PSD is. defined for discrete positive, zero, and negative frequencies, and its

sum over these is the function mean squared amplitude. defined for zero and discrete positive frequencies only, and its sum
over these is the function mean squared amplitude. defined in the Nyquist interval from - fc  to fc, and its integral over
this range is the function mean squared amplitude. defined from 0 to fc, and its integral over this range is the function
mean squared amplitude

It never makes sense to integrate the PSD of a sampled function outside
of the Nyquist interval -fc and fc  since, according to the sampling  theorem,
power there will have been aliased  into the Nyquist interval.

It is hopeless to define enough notation to distinguish all possible combi-
nations of normalizations. In what follows, we use the notation P(f) to mean
any of the above PSDs, stating in each instance how the particular P(f) is
normalized. Beware the inconsistent notation in the literature.

The method of power spectrum estimation used in the previous section
is a simple version of an estimator called, historically, the periodogram. If we
take an N-point sample of the function c(t) at equal intervals and use the
FFT to compute its discrete Fourier transform

N - l
ck = C cj e2NWN k = 0 , . . . , N - 1  (12.7.4)

j=O

then the periodogram estimate of the power spectrum is defined at N/2 + 1
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frequencies as

P(O)  = Wfo)  = $ lCo12

[hi2  + IcN-k12] (127.5)

‘(fC) = p(fN/P)  = -$ ICN,,]”

where fk is defined only for the zero and positive frequencies

fk+2fc; *lc = O,l,.  . . , ;

By Parseval’s theorem, equation (12.1.10),  we see immediately that equation
(12.7.5) is normalized so that the sum of the N/2 + 1 values of P is equal to
the mean squared amplitude of the function cj.

We must now ask this question. In what sense is the periodogram es-
timate (12.7.5) a “true” estimator of the power spectrum of the underlying
function c(t)? You can find the answer treated in considerable detail in the
literature cited (see, e.g., Oppenheim and Schafer for an introduction). Here
is a summary.

First, is the expectation value of the periodogram estimate equal to the
power spectrum, i.e., is the estimator correct on average? Well, yes and no.
We wouldn’t really expect one of the P(fk)‘s to equal the continuous P(f) at
exactly  fk,  since fk is supposed to be representative of a whole frequency "bin"
extending from halfway from the preceding discrete frequency to halfway to
the next one. We should be expecting the P(fk) to be some kind of average of
P(f) over a narrow window function centered on its fk. For the periodogram
estimate (12.7.6) that window function, as a function of a the frequency offset
in bins, is

(12.7.7)

Notice that W(a) has oscillatory lobes but, apart from these, falls off only
about as W(a) x (xa)-2. This is not a very rapid fall-off, and it results in
significant  leakage (that is the technical term) from one frequency to another
in the periodogram estimate. Notice also that W(a) happens to be zero for
a equal to a nonzero  integer. This means that if the function c(t) is a pure
sine wave of frequency exactly equal to one of the fk’s,  then there will be
no leakage to adjacent fk’s.  But this is not the characteristic case! If the
frequency is, say, one-third of the way between two adjacent fk’s,  then the
leakage will extend well beyond those two adjacent bins. The solution to the
problem of leakage is called data windowing, and we will discuss it below.
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Turn now to another question about the periodogram estimate. What
is the variance of that estimate as N goes to infinity?  In other words, as we
take more sampled points from the original function (either sampling a longer
stretch of data at the same sampling rate, or else by resampling the same
stretch of data with a faster sampling rate), then how much more accurate
do the estimates Pk  become? The unpleasant answer is that the periodogram
estimates do not become more accurate at all! In fact, the variance of the
periodogram estimate at a frequency fk  is always equal to the square of its
expectation value at that frequency. In other words, the standard deviation
is always 100 percent of the value, independent of N! How can this be?
Where did all the information go as we added points? It all went into pro-
ducing estimates at a greater number of discrete frequencies fk. If we sample
a longer run of data using the same sampling rate, then the Nyquist criti-
cal frequency fc  is unchanged, but we now have finer  frequency resolution
(more fk’s)  within the Nyquist frequency interval; alternatively, if we sample
the same length of data with a finer sampling interval, then our frequency
resolution is unchanged, but the Nyquist range now extends up to a higher
frequency. In neither case do the additional samples reduce the variance of
any one particular frequency’s estimated PSD.

You don’t have to live with PSD estimates with 100 percent standard
deviations, however. You simply have to know some techniques for reducing
the variance of the estimates. Here are two techniques that are very nearly
identical mathematically, though different in implementation. The first is to
compute a periodogram estimate with finer discrete frequency spacing than
you really need, and then to sum the periodogram estimates at K consecutive
discrete frequencies to get one "smoother"  estimate at the mid frequency of
those K. The variance of that summed estimate will be smaller than the
estimate itself by a factor of exactly l/K, i.e. the standard deviation will
be smaller than 100 percent by a factor l/e.  Thus, to estimate the power
spectrum at M + 1 discrete frequencies between 0 and fc inclusive, you begin
by taking the FFT of 2MK points (which number had better be an integer
power of two!). You then take the modulus square of the resulting coefficients,
add positive and negative frequency pairs and divide by (2MK)2,  all according
to equation (12.7.5) with N = 2MK. Finally, you “bin” the results into
summed (not averaged) groups of K. This procedure is very easy to program,
so we will not bother to give a routine for it. The reason that you sum, rather
than average, K consecutive points is so that your final PSD estimate will
preserve the normalization property that the sum of its M + 1 values equals
the mean square value of the function.

A second technique for estimating the PSD at M + 1 discrete frequencies
in the range 0 to f, is to partition the original sampled data into K segments
each of 2M consecutive sampled points. Each segment is separately FFT’d
to produce a periodogram estimate (equation 12.7.5 with N = 2M). Finally,
the K periodogram estimates are averaged at each frequency. It is this final
averaging that reduces the variance of the estimate by a factor K (standard
deviation by a).  This second technique is computationally more efficient
than the first technique above by a modest factor, since it is logarithmically
more efficient to take many shorter FFTs  than one longer one. The principal
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advantage of the second technique, however, is that only 2M data points are
manipulated at a single time, not 2KM as in the first technique. This means
that the second technique is the natural choice for processing long runs of
data, as from a magnetic tape or other data record. We will give a routine
later for implementing this second technique, but we need first to return to the
matters of leakage and data windowing which were brought up after equation
(12.7.7) above.

Data Windowing

The purpose of data windowing is to modify equation (12.7.7),  which
expresses the relation between the spectral estimate Pk  at a discrete frequency
and the actual underlying continuous spectrum P(f) at nearby frequencies.
In general, the spectral power in one “bin” k contains leakage from frequency
components that are actually s bins away, where s is the independent variable
in equation (12.7.7). There is, as we pointed out, quite substantial leakage
even from moderately large values of s.

When we select a run of N sampled points for periodogram spectral
estimation, we are in effect multiplying an infinite run of sampled data cj
by a window function in time, one which is zero except during the total
sampling time NA, and is unity during that time. In other words, the data are
windowed by a square window function. By the convolution theorem (12.0.9;
but interchanging the roles of f and t), the Fourier transform of the product
of the data with this square window function is equal to the convolution of
the data’s Fourier transform with the window’s Fourier transform. In fact, we
determined equation (12.7.7) as nothing more than the square of the discrete
Fourier transform of the unity window function.

2

(12.7.8)

The reason for the leakage at large values of s, is that the square window
function turns on and off so rapidly. Its Fourier transform has substantial
components at high frequencies. To remedy this situation, we can multiply
the input data cj, j = 0,. . . , N - 1 by a window function wj that changes
more gradually from zero to a maximum and then back to zero as j ranges
from 0 to N - 1. In this case, the equations for the periodogram estimator
(12.7.4-12.7.5) become

N-l
Dk s c cjwj e2nGklN k = 0 , . . . , N - 1  (12.7.9)

j=O

p(O) = Wo)  = & IDo1288
p(fd = & [l&l2  + IDN-k12]
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P(fc) =  WN/P) =  & IL)N,212 (12.7.10)

where W,,  stands for “window squared and summed,”

(12.7.11)

and fk  is given by (12.7.6). The more general form of (12.7.7) can now be
written in terms of the window function wj as

W(s)  = &-
ss

1
NN-

WSS

N-1
C e2nisk/NWk 2

k = O

cos(2wsk/N)w(k  -

2
(12.7.12)

N/2) dk

Here the approximate equality is useful for practical estimates, and holds for
any window that is left-right symmetric (the usual case), and for s <  N
(the case of interest for estimating leakage into nearby bins). The continuous
function w( k - N/2) in the integral is meant to be some smooth function that
passes through the points wk.

There is a lot of perhaps unnecessary lore about choice of a window
function, and practically every function which rises from zero to a peak and
then falls again has been named after someone. A few of the more common
(also shown in Figure 12.7.1) are:

Wj=l-
j - +(N - 1)

;(N  + 1)
z "Parzen  window”

(The “Bartlett window” is very similar to this.)

wj = i [I-cos  (&)I  = “Hanning window”

(12.7.13)

(12.7.14)

(The “Hamming window” is similar but does not go exactly to zero at the
ends.)

Wj=l-
j-i(N-1)  2

+(N + 1) >
=  “Welch window” (12.7.15)
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Figure 12.7.1. Window functions commonly used in FFT power spectral estimation. The
data segment, here of length 256, is multiplied (bin by bin) by the window function before
the FFT is computed. The square window, which is equivalent to no windowing, is least
recommended. The Welch and Parzen windows are good choices.

We are inclined to follow Welch in recommending that you use either
(12.7.13) or (12.7.15) in practical work. However, at the level of this book,
there is effectively no difference  between any of these (or similar) window
functions. Their difference lies in subtle tradeoffs among the various figures
of merit that can be used to describe the narrowness or peakedness of the spec-
tral leakage functions computed by (12.7.12). These figures of merit have such
names a s  highest sidelobe  level (db), sidelobe  fall-off  (db per octave), equiv-
alent noise bandwidth (bins), 3-db  bandwidth (bins), scallop loss (db), worst
case process loss (db). Roughly speaking, the principal tradeoff is between
making the central peak as narrow as possible versus making the tails of the
distribution fall off as rapidly as possible. For details, see (e.g.) Harris. Figure
12.7.2 plots the leakage amplitudes for several windows already discussed.

There is particularly a lore about window functions which rise smoothly
from zero to unity in the first small fraction (say 10 percent) of the data,
then stay at unity until the last small fraction (again say 10 percent) of the
data, during which the window function falls smoothly back to zero. These
windows will squeeze a little bit of extra narrowness out of the main lobe of
the leakage function (never as much as a factor of two, however), but trade
this off by widening the leakage tail by a significant factor (e.g., the reciprocal
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Figure 12.7.2. Leakage  functions for the window functions of Figure 12.7.1. A signal whose
frequency is actually located at zero offset “leaks” into neighboring bins with the amplitude
shown. The purpose of windowing is to reduce the leakage at large offsets, where square
(no) windowing has large sidelobes. Offset can have a fractional value, since the actual
signal frequency can be located between two frequency bins of the FFT.

of 10 percent, a factor of ten). If we distinguish between the width of a
window (number of samples for which it is at its maximum value) and its
rise/fall time (number of samples during which it rises and falls); and if we
distinguish between the FWHM (full width to half maximum value) of the
leakage function’s main lobe and the leakage width (full width that contains
half of the spectral power that is not contained in the main lobe); then these
quantities are related roughly by

(FWHM in bins) = (wmdo~width)

(leakage  width in  bins)  x  (window  ri~,fall time) (12.7.17)

For the windows given above in (12.7.13)-(12.7.15),  the effective window
widths and the effective window rise/fall times are both of order +N.  Gen-
erally speaking, we feel that the advantages of windows whose rise and fall
times are only small fractions of the data length are minor or nonexistent, and
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we avoid using them. One sometimes hears it said that flat-topped windows
“throw away less of the data,” but we will now show you a better way of
dealing with that problem by use of overlapping data segments.

Let us now suppose that we have chosen a window function, and that
we are ready to segment the data into K segments of N = 2M points. Each
segment will be FFT'd,  and the resulting K periodograms will be averaged
together to obtain a PSD estimate at M frequency values between 0 and
fc. We must now distinguish between two possible situations. We might
want to obtain the smallest variance from a fixed  amount of computation,
without regard to the number of data points used. This will generally be the
goal when the data are being gathered in real time, with the data-reduction
being computer-limited. Alternatively, we might want to obtain the smallest
variance from a fixed number of available sampled data points. This will
generally be the goal in cases where the data are already recorded and we are
analyzing it after the fact.

In the first situation (smallest spectral variance per computer operation),
it is best to segment the data without any overlapping. The first 2M data
points constitute segment number 1; the next 2M data points constitute seg-
ment number 2; and so on, up to segment number K, for a total of 2KM
sampled points. The variance in this case, relative to a single segment, is
reduced by a factor K.

In the second situation (smallest spectral variance per data point), it
turns out to be optimal, or very nearly optimal, to overlap the segments by
one half of their length. The first and second sets of M points are segment
number 1; the second and third sets of M points are segment number 2; and so
on, up to segment number K, which is made of the Kth and K + lSt  sets of M
points. The total number of sampled points is therefore (K + l)M,  just over
half as many as with nonoverlapping segments. The reduction in the variance
is not a full factor of K, since the segments are not statistically independent.
It can be shown that the variance is instead reduced by a factor of about
9K/ll  (see the paper by Welch in Childers). This is, however, significantly
better than the reduction of about K/2 which would have resulted if the same
number of data points were segmented without overlapping.

We can now codify these ideas into a routine for spectral estimation.
While we generally avoid input/output coding, we make an exception here to
show how data are read sequentially in one pass through a data file (referenced
through the parameter FILE *fp). Only a small fraction of the data is in
memory at any one time.

#include <math.h>
#include <stdio.h>

static float sqrarg;
#define SQFlfa)  (sqrarg=(a),sqrarg*sqrarg)

#define WIND0Wfj.a.b) (l.O-fabs((((j)-l)-(a))*(b))) /* Parzen */
/* #define WIND0Wfj.a.b) 1.0 */ /* Square */
/* #define WIND0Wfj.a.b) (l.O-SQR((((j)-l)-(a))*(b)))  :/ /* W e l c h  */

void spctrm(fp,p.m,k,ovrlap)
FILE tfp;
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float pc1;
int m.k.ovrlap;
Reads data  f rom input  s t ream speci f ied  by  f i le  po inter  fp and re turns  as  p[j]  the  da ta ’s  power
(mean square amplitude) at frequency (j-l)/(%m)  cycles per gridpoint,  for j4.2..  . . .m,
based on (I*k+i)*m  data points (If ovrlap is set TMJE  (1)) or 4*k*m  data points (If ovrlap is
set FALSE (0)). The number of segments of the data Is P*k in both cases: the routine calls
four1  k-times, each call with 2 partitions each of Z*m  real data points.
t

int  mm.m44.m43.m4.kk.joffa,joff.j2.j;
float w,facp,facm.*wl.*w2.aumw=0.0,dea=O.O;
float *vector();
void fourl(),frae_vector();

mm=m+m  ;
m43=(m4=mm+mm)+3;
m44=m43+1;
wl=vector(l.mrl);
w2=vector(l.m);
facm=m-0.6;
facp=i.O/(m+0.6);

Useful  factors.

for (j=i;j<=m;j++)  eumw ??= SQB(WIWDOW(j,facm.facp));
for (j=l;j<=m;j++)  p[jl=O.O; Initialize the spectrum to zero.
if (ovrlalj) Initialize the “save” half-buffer.

for (j=l;j<=m;j++)  fscanf(fp."%f".&w2Ejl);
for (kk=l;kk<=k;kk++)  I Loop over data set segments  in grows of two.

for (joif  = -i;joff<=O;joff++)  C: Get two complete segments into  workspace.
if (ovrlap) C

for (j=l;j<=m;j++)  *lCjoff+j+jl=n2Cjl;
for (j=l;j<=m;j++)  fscanf(fp.~Xf*,~2Cjl);
joffn=joff+!dm;
for (j=l;jC=m;j++)  rlCjoffn+j+jl=w2~jl;

3 else c
for (j=joff+2;j<=m4;j+=2)

facani~fp."xf",(hrlcjl);
3

3
for (j-1;  j<=mm;  j++) I Apply the window to the data.

ja=j+j;
w=WIWDOW(j.facm.facp);
wllj21 *= w;
wlCj2-11 *= w;

3
fourl(wl.mw.l); Fourier transform the windowed data.
PC11  += ~SQR~wlCll~+sQR~wlC21~~; Sum results  into ~revlous  segments.
f o r  (j=Z;j<=m;j++)  t

jq+j;
p[jl += (SQB(wiCj2l)+SQR(wlCj2-11)

+SQR(wlCm44-j2l)+SQR(wlCm43-j21));
3
den += eumw;

3
den *= m4; Correct normalization.
for (j=l;j<=m;j++)  pCj1  /= den; Normalize the output.
free-vector(w2,l.m);
free-vector(wl.l.m4);

3
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12.8 Power Spectrum Estimation by the
Maximum Entropy (All Poles) Method

The FFT is not the only way to estimate the power spectrum of a process,
nor is it necessarily the best way for all purposes. To see how one might devise
another method, let us enlarge our view for a moment, so that it includes not
only real frequencies in the Nyquist interval -fC  < f < fC, but also the
entire complex frequency plane. From that vantage point, let us transform
the complex f-plane to a new plane, called the z-transform plane or z-plane,
by the relation

z = e2rifA-

where A is, as usual, the sampling interval in the time domain. Notice that
the Nyquist interval on the real axis of the f-plane maps one-to-one onto the
unit circle in the complex z-plane.

If we now compare (12.8.1) to equations (12.7.4) and (12.7.6), we see
that the FFT power spectrum estimate (12.7.5) for any real sampled function
ck  = c(i!k)  can be written, except for normalization convention, as

(12.8.2)

Of course, (12.8.2) is not the true  power spectrum of the underlying function
c(t), but only an estimate. We can see in two related ways why the estimate
is not likely  to be exact. First, in the time domain, the estimate is based
on only a finite range of the function c(t) which may, for all we know, have
continued from t = -oo  to 00.  Second, in the z-plane of equation (12.8.2),
the fmite Laurent series offers, in general, only an approximation to a general


