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Abstract

Complex nonlinear dynamic systems are ubiquitous in the landscapes and phenomena studied by earth sciences in general

and by geomorphology in particular. Concepts of chaos, fractals and self-organization, originating from research in nonlinear

dynamics, have proven to be powerful approaches to understanding and modeling the evolution and characteristics of a wide

variety of landscapes and bedforms. This paper presents a brief survey of the fundamental ideas and terminology underlying

these types of investigations, covering such concepts as strange attractors, fractal dimensions and self-organized criticality.

Their application in many areas of geomorphological research is subsequently reviewed, in river network modeling and in

surface analysis amongst others, followed by more detailed descriptions of the use of chaos theory, fractals and self-organization

in coastal geomorphology in particular. These include self-organized behavior of beach morphology, the fractal nature of ocean

surface gravity waves, the self-organization of beach cusps and simulation models of ripples and dune patterns. This paper

further presents a substantial extension of existing dune landscape simulation models by incorporating vegetation in the

algorithm, enabling more realistic investigations into the self-organization of coastal dune systems. Interactions between

vegetation and the sand transport process in the model—such as the modification of erosion and deposition rules and the growth

response of vegetation to burial and erosion—introduce additional nonlinear feedback mechanisms that affect the course of self-

organization of the simulated landscape. Exploratory modeling efforts show tantalizing results of how vegetation dynamics

have a decisive impact on the emerging morphology and—conversely—how the developing landscape affects vegetation

patterns. Extended interpretation of the modeling results in terms of attractors is hampered, however, by want of suitable state

variables for characterizing vegetated landscapes, with respect to both morphology and vegetation patterns.
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1. Introduction

Research in nonlinear dynamic systems has grown

rich and varied as notions of chaos, fractals and self-

organization have been recognized in virtually all

physical and human sciences, ranging from econom-

ics and linguistics to physics and geomorphology.

This paper reviews the principal applications of these

concepts in geomorphology, particularly in coastal

geomorphology, and presents an exemplary self-

organization model for the simulation of aeolian dune

landscapes in vegetated environments. Although this

paper is not intended as a rigorous and comprehensive

review of chaos, fractals and self-organization in

general, a brief overview of the basic ideas and terms

involved is appropriate in order to appreciate their

application in geomorphology. For comprehensive

examination of these concepts, the reader is referred
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to Gleick (1987) and Kauffman (1995) for popular

descriptions, while the more rigorous mathematical

underpinning and specific algorithms may be found in

Turcotte (1992) and Strogatz (1994).

2. General concepts

2.1. Chaos theory

Chaos theory is epitomized by the so-called ‘but-

terfly effect’ detailed by Lorenz (1963). Attempting to

simulate numerically a global weather system, Lorenz

discovered that minute changes in initial conditions

steered subsequent simulations towards radically dif-

ferent final states. This sensitive dependence on initial

conditions is generally exhibited by systems contain-

ing multiple elements with nonlinear interactions,

particularly when the system is forced and dissipative.

A system is said to be forced when its internal

dynamics are driven by externally supplied energy

(e.g. solar energy driving the global weather system),

and a system is considered dissipative when ‘useful’

energy—in terms of its ability to perform work—is

converted into a less useful form, most prominently

through friction (also referred to as damping).

Sensitive dependence on initial conditions is not

only observed in complex systems, but even in the

simplest logistic equation model in population biology

(May, 1976). This recursive equation describes the

size of a self-reproducing population, P, at time t + 1

as a nonlinear function of the population at time t:

Pt + 1 = rPt(1�Pt). The value of the parameter r

determines whether a population stabilizes at a con-

stant size, oscillates between a limited sequence of

sizes, or whether the population size behaves chaoti-

cally in an unpredictable pattern. In the latter case, a

minute variation in the value of r results in a dramat-

ically different population size after a specific period

of time. Graphing the population size reached after a

fixed number of iterations (PT) against the parameter

r generates a bifurcation diagram (Fig. 1), which

Fig. 1. The standard depiction of the bifurcation diagram for the logistic equation. Each dot charts the population size after 1000 iterations, PT,

of the recursive equation: Pt + 1 = rPt(1�Pt) for a value of r. The initiating value of P, P0 is set to 0.66. Upon magnification of an apparently

chaotic region (boxed) self-similar areas of order appear (inset). Magnification in this sense means a refinement of the precision of the values of

r. Both this figure and Fig. 2 were created using the computer program ‘‘Fractint’’ developed by The Stone Soup Group (freeware).
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contains regions with singular equilibrium popula-

tions for low values of r, bifurcating into an oscillating

population as the parameter r increases and in turn

deteriorating into a chaotic pattern as r reaches a

critical value (Strogatz, 1994, p. 353). Within the

chaotic regions, however, smaller areas of stable

periodicity are discernible (associated with certain

minute ranges of the value of r), and these stable

areas appear over and over on every possible scale of

examination. The self-similarity or repetition of this

pattern across different scales is identified as a fractal.

2.2. Fractals

Fractals are defined as geometric objects that are

self-similar under a change of scale, i.e. their shape

remains the same under any magnification or reduc-

tion. The object consists of elements of a certain

dimension embedded in a higher dimensional space,

e.g. a distribution of points (dimension zero) on a line

(one-dimensional), or a collection of planes (two-

dimensional) embedded in a three-dimensional Eucli-

dean space. A fundamental property of fractals is their

‘fractal (also fractional) dimension’, a noninteger

value between the dimension of the constituting

elements and the embedding dimension. Because of

the self-similar pattern extending over an infinite

range of scales, a fractal curve (composed of one-

dimensional line elements) embedded in a two-dimen-

sional plane, for example, has an infinite length within

a finite area of the plane. The fractal dimension

characterizes the extent to which the fractal ‘fills up’

the embedding space and, in this example, will attain

a value between 1 and 2.

2.3. Attractors

The evolution of a dynamic system through time

can be observed by tracing the instantaneous values of

n state variables in n-dimensional space, the phase-

space. A system in a steady state will appear as a point

in phase-space, while a stable oscillator traces a closed

loop through phase-space. The point and the closed

loop are both attractors for their respective systems, i.e.

the systems develop toward those states regardless of a

range of boundary conditions and perturbations. A

forced and damped oscillator (such as a magnetically

driven pendulum with friction, for example) may be

represented in a 2D phase-space by its instantaneous

angular deflection and speed (the two state variables).

An over-damped oscillator will spiral towards a point-

attractor as it grinds to a halt, while under a range of

forcing–damping ratios, the oscillating system will

trace out a closed loop in phase-space. However, this

nonlinear system also exhibits chaotic behavior under

the right conditions, and it traces as a fractal in phase-

space. This fractal is the attractor for the system in

phase-space, termed a ‘strange attractor’.

Fractals can thus be temporal, spatial or phase-

space manifestations of chaos in nonlinear dynamic

systems. Fractals are recognized in the time series of

cotton prices and stocks and options (Mandelbrot,

1963), and in the occurrence of noise in communica-

tion lines (Berger and Mandelbrot, 1963). Spatial

fractal patterns are recognized in a multitude of

natural elements—at least over a certain range of

scales—such as coastlines, snow flakes, fern leaves

and the human lung. Fractals in phase-space can either

be attractors themselves, i.e. strange attractors, such as

the bifurcation diagram of the logistic equation, or

they can constitute the dividing line between separate

attractor basins in phase-space (Fig. 2).

2.4. Self-organization

The scale-invariance of fractals is frequently

coupled with self-organization in nonlinear dynamic

systems consisting of large aggregations of interacting

elements. As such a system moves on a strange

attractor in phase-space, any particular length scale

from external forcing is lost (‘forgotten’) and instead,

the smallest length scale of the individual elements

propagates its effect across all scales. This generates

pattern formation that may or may not exhibit fractal

properties. An example is Rayleigh–Benard convec-

tion, where individual fluid motions are chaotic while a

pattern of convection cells is formed that scales with the

viscosity of the fluid (instead of with the amount of heat

dissipation or the dimensions of the container). The

emergence of structure, or order, in a system through its

internal dynamics and feedback mechanisms is the

essence of self-organization, as opposed to the gener-

ation of regularity as a result of external forcing. In a

thermodynamic perspective, self-organization arises in

nonlinear systems that are far from equilibrium and

dissipative (irreversible). Coherent motions and pat-
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terns created in such systems are therefore called

dissipative structures (Kauffman, 1995). Further ther-

modynamic interpretations of complex systems lead to

principles of minimum entropy production in open

systems and maximum entropy states in closed systems

(Prigogine and Stengers, 1984). The stochastic inter-

pretation of these entropy principles in complex sys-

tems can in turn be related to information theory

(Shannon and Weaver, 1949; Jaynes, 1957; Brillouin,

1962; Kapur and Kesavan, 1992).

2.5. Self-organized criticality

A variation on the self-organization concept is the

model of self-organized criticality proposed by Bak

(1996). The prototypical example is the accumulating

sandpile, in which the nonlinear dynamics between

disturbed and avalanching sand grains retain the

system in a critical state with the slopes of the pile

at the angle of repose (Bak et al., 1988). The proper-

ties (such as angularity and size of the sediment) of

the smallest element—the grain—determine the large-

scale properties of the system as a whole (the critical

angle of repose). A small disturbance (e.g. the addi-

tion of another grain of sand at the top) can trigger

avalanches that, constrained only by the size of the

pile itself. Power laws, such as the Gutenberg–Richter

law of earthquake frequency and magnitude, are

manifestations of self-organized criticality (Bak,

1996). Furthermore, the temporal signatures of such

systems display a characteristic self-similar (fractal)

response, where earthquakes or avalanches, for exam-

ple, occur over all possible time scales. This behavior

is manifested in a 1/f power spectrum (i.e. the power is

inversely proportional to the frequency), as opposed

to the uniform power spectrum of a purely stochastic

process (Bak et al., 1987).

On a final note, it must be remarked that some of

these ideas are controversial, especially with regards

to their application to real physical systems. Further-

more, it is generally acknowledged that the peak of

popular research interest into chaos, fractals and self-

organization has passed. At the same time, it is also

recognized, however, that these concepts still provide

valuable new insights and approaches and offer cer-

tain distinct advantages when dealing with systems

containing large collections of elements involving

multiple or complex interactions. As such, they have

been adopted as models and analysis tools in a broad

range of scientific disciplines.

Fig. 2. (a) Fractal boundaries between three attractor basins in the Argand plane (whose axes are defined by the real and the imaginary number

lines). The image shows how Newton’s method for solving equations leads from any starting point in the plane to one of the three complex roots

of the equation x3� 1 = 0. Newton’s method starts with an initial guess, x0, which is improved upon according to the iterative algorithm:

xn + 1=(2xn
3 + 1)(3xn

� 2). The gray tones indicate the attractor basins and the striping reveals the attractors, i.e. complex roots at: x= 1,

x =�½+½M3 i and x = �½�½M3 i at the center of the concentric bands. (b) Magnification of the boxed area in (a) reveals the fractal nature

of the boundary between the attractor basins.
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3. Geomorphology

Geomorphology presents an obvious arena for the

application of chaos theory, fractals and self-organ-

ization concepts, as nearly all landscapes exhibit a

range of nonlinear dynamic interactions between

system elements. Further, many features of the natural

landscape have a fractal-like appearance. Indeed, one

of conceptions of fractals evolved through an analysis

of the set of measurements of Richardson (1961) of

Britain’s coastline by Mandelbrot (1967), who has

subsequently described a host of natural features in

terms of fractals (Mandelbrot, 1982). Fractal dimen-

sions are used in geomorphology primarily as a means

of descriptive parameterization of patterns and land-

scape topography, e.g. as a measure of the roughness

of a surface. Fractal dimensions can be determined

two-dimensionally from contour lines or cross-sec-

tional profiles, or in three dimensions using DEMs

(Burrough, 1981; Turcotte, 1992; Tate, 1998). An

extensive review of methods of fractal measurement

of landscapes is found in Xu et al. (1993). Though

landscape surfaces are not self-similar ad infinitum, it

is found that fractal dimensions do capture some

aspect of the surface roughness over a limited range

of scales that other morphometric measures do not

(Klinkenberg, 1992; Outcalt et al., 1994). However,

comparison of fractal dimensions obtained from dif-

ferent methods can be problematic and error estimates

are difficult to determine (Andrle, 1992; Xu et al.,

1993). Thus, Andrle (1996) has shown that the coast-

line of West Britain does not conform to one single

fractal dimension, contrary to Mandelbrot’s earlier

findings. While fractals and power-law distributions

are widely applied for the analysis of landscape

surfaces, fractional dimensions are also used as a

differentiating characteristic of granular material in

terms of fragmentation (Turcotte, 1986) and grain

shape (Orford and Whalley, 1983; Kennedy and Lin,

1992). In soil hydraulics, an extensive body of liter-

ature exists dedicated to the use of fractal descriptions

in water percolation problems, rock fracture, soil

aggregates and ground water flow (Neuman, 1990;

Anderson et al., 1998; Marrett et al., 1999).

In fluvial geomorphology, an entire field has

developed around the analysis, interpretation and

modeling of river networks in terms of fractals and

self-organization. In particular, it has been found that

well-established characteristic properties of river net-

works, such as Horton’s power laws of bifurcation and

stream-order length (Horton, 1945) and the power law

of length and basin area of Hack (1957), are indicative

of a fractal (self-similar) stream pattern (Rinaldo et al.,

1993; Claps et al., 1996). These properties can be

explained as resulting from self-organized criticality

in the development of incised (erosional) landscapes,

where the critical state is one of minimum energy

dissipation (i.e. minimum entropy production) (Ri-

naldo et al., 1993; Rigon et al., 1994; Rodriguez-

Iturbe and Rinaldo, 1997), harkening back to the

random-walk models and entropy concepts of Leo-

pold and Langbein (1962). Specifically, Rodriguez-

Iturbe et al. have developed numerical models that

simulate the development of river networks on cellu-

lar grids based on a few simple hydraulic sediment

transport relations. In this algorithm, erosion (and

subsequent basin development) only occurs when

local shear stress—derived from local slope and catch-

ment area—exceeds a critical threshold. This thresh-

old-dependent feedback mechanism generates a

fractal river network whose global energy dissipation

is at a minimum (measured as changes in potential

energy resulting from down slope mass-transport) and

which displays the same power-law characteristics

(e.g. Horton’s and Hack’s; see above) found in natural

river networks (Rodriguez-Iturbe and Rinaldo, 1997,

pp. 379–393).

More recently, the concept of self-organized crit-

icality has been applied to braided rivers (Murray and

Paola, 1994; Sapozhnikov and Foufoula-Georgiou,

1999) and tidal channels (Cleveringa and Oost,

1999), while further fractal analysis and self-organ-

ization modeling of river networks have been per-

formed by Talling (2000) and Veneziano and

Niemann (2000). However, field evidence does not

always seem to support the thesis of statistical self-

similarity of river networks (Beauvais and Montgom-

ery, 1997).

Concepts of self-organization and chaos are now

commonly found in many areas of research in the earth

sciences, e.g. in the distribution and development of

soils (Culling, 1988; Phillips, 2000), patterned vege-

tation (Klausmeier, 1999), patterned peri-glacial

ground (Werner and Hallet, 1993) and riffle–pool

sequences in mountain streams (Clifford, 1993). A

host of numerical models has been developed simulat-
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ing the evolution of periodic bedforms as a result of

self-organization (see below). A recent issue of the

Journal of Hydrology was dedicated solely to chaos

theory in hydrology (Sivakumar, 2000), and many

general review articles have appeared over the past

decade (Huggett, 1988; Hallet, 1990; Malanson et al.,

1990, 1992; Phillips, 1994, 1995, 1999; Werner,

1999). Many of the latter papers stress the fact that

although concepts of chaos and self-organization are

clearly valuable for geomorphology, several important

issues remain to be addressed. Firstly, prevalent noise

in natural geomorphic systems often obscures any

truly chaotic or fractal pattern or signal present.

Secondly, most current applications are limited to

idealized numerical modeling of systems, while the

quantity and quality of field evidence for testing these

models are mostly inadequate, especially considering

the large numbers of data points that are required on

relatively small spatial and temporal scales. Lastly,

there exists a variety of definitions and interpretations

of self-organization and chaos in the literature and the

associated diversity of methodology for analyzing

geomorphic systems (e.g. power laws, criticality,

entropy maximization, entropy production minimiza-

tion, strange attractors, fractal dimensions, etc.) can be

confusing, hampers comparison and is often challeng-

ing for geomorphologists not well versed in quantita-

tive methods.

4. Coastal geomorphology

Coastal systems can be categorized as nonlinear

dissipative complex systems as wind and wave energy

is dissipated in the coastal zone and the interactions

between morphology, sediment transport and fluid

dynamics are strongly nonlinear. Southgate and Beltran

(1998) and Southgate and Moller (2000) investigated

the response of beach morphology to hydrodynamic

forcing on monthly to decadal time scales in terms of

self-organized behavior. Bymeans of fractal analysis of

beach-level time series at various locations along the

cross-shore profile, they discovered that different parts

of the shore face exhibit different degrees of self-

organized behavior. At Duck, North Carolina, most

notably the dune and upper shoreface zones display a

fractal response that is indicative of self-organized

behavior, while the inner and outer bar zones present

mostly random Gaussian time series. Southgate and

Moller (2000) relate these differing response regions to

the different degrees and temporal scales of hydro-

dynamic forcing. They argue that the morphodynamic

response in the bar zones is forced by the mixture of

breaking and nonbreaking waves, a Gaussian forcing,

whereas the upper shoreface zone and the dune zone

experience much less external forcing by waves (in the

first case because waves are not breaking yet, in the

second because most wave energy is dissipated

already). In the latter zones, self-organization of the

profile is, therefore, more predominant.

In oceanography, various researchers have recently

investigated water levels, wave climates and ocean

currents in terms of chaotic behavior and self-organ-

ization. Growing out of a large body of literature

concerning chaos and self-organized coherent struc-

tures in turbulent fluid flows (cf. Takens, 1981;

Debnath and Riahi, 1998), Seidov and Marushkevich

(1992) investigated the development of large-scale

ocean currents resulting from stochastic forcing

through self-organization mechanisms. Other research

has shown that deep- and shallow water gravity waves

exhibit a fractal surface both spatially and in time

evolution (Elgar and Mayer-Kress, 1989; Stiassnie et

al., 1991). Ohta and Kimura (1996) analyzed time

series of wave height at three Japanese ports for

chaotic behavior and tried to use that information to

predict significant wave height, with mixed results.

Frison et al. (1999) applied chaos theory to the

analysis of ocean water levels measured at different

types of coastlines and showed that a chaotic charac-

terization extracted from the time series (so-called

‘Lyapunov exponents’) can be used to distinguish

different tide zones and water level variability.

Perhaps the most widely known application of self-

organization concepts in coastal geomorphology is the

beach cusp model by Werner and Fink (1993). In this

3D numerical simulation model, only the basic pro-

cesses of swash flow and sediment transport are

incorporated in a greatly simplified algorithm. The

nonlinear element in this system is the sediment flux

being proportional to the cube of the flow velocity.

The forcing is the initial shoreward velocity given to

the swash, while the dissipation in the system largely

results from the leveling effect of the enforcement of

the angle of repose (a friction term) through avalanch-

ing. The nonlinear feedback between altering beach
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morphology and swash flow dynamics (and hence,

sediment transport) produces a regular pattern of

cusps and horns out of an initially plain Gaussian

topography. Werner and Fink relate the mean beach

cusp spacing to the swash excursion length—mainly a

function of the beach slope—and have noted the good

agreement with field observations. While predictions

of cusp spacing are in close agreement with those

from the standing edge wave model by Guza and

Inman (1975), this also means that it is difficult to

differentiate between the two mechanisms in field

tests. Since the introduction of the Werner and Fink

model, several investigations have been conducted to

assess its merits and test both the self-organization

and the edge wave models against field evidence

(Allen et al., 1996; Coco et al., 1999a,b). These

studies have reinforced the notion that both models

are equally viable, but that only elaborate and exten-

sive field measurements of swash zone dynamics will

be able to distinguish which of the two mechanisms

(or a simultaneous presence) is acting in the creation

of beach cusps.

Cellular automaton models similar to the beach

cusp model have also been applied to the simulation

of aeolian ripples and dunes. Anderson (1990) devel-

oped a 2D cellular simulation model based on the

dynamics between saltation, reptation and ripple evo-

lution established by Anderson et al. (Anderson,

1987; Anderson and Haff, 1988). This model is driven

by the high-energy impact of saltating grains ejecting

reptating grains that form small undulations. Non-

linear feedback interactions occur between the angle

of impacting grains, the reptating grains (via a splash

function) and the evolving surface and its local slopes.

Through progressive coalescence and mergers of

small undulations, ripples evolve at a particular dom-

inant wavelength, dependent on the saltation impact

angle. Although the external driving force in this

system, the impacts of saltating grains, is entirely

stochastic (saltating grains are introduced randomly

on the grid), a distinct ripple pattern spontaneously

emerges through self-organization by the internal

nonlinear dynamics. Later refinements of the model

have also been capable of simulating grain size

segregation and stratigraphy in ripples (Anderson

and Bunas, 1993). Several other authors have pre-

sented similar numerical models (Nishimori and

Ouchi, 1993; Werner and Gillespie, 1993; Vandewalle

and Galam, 1999), while various analytical models

have shown the fundamental instability of a flat sur-

face subject to saltation impacts and the inevitable

development of ripples (McLean, 1990; Werner and

Gillespie, 1993; Hoyle and Mehta, 1999; Prigozhin,

1999; Valance and Rioual, 1999).

Numerical simulation of sediment transport in

terms of moving slabs of sediment has also proven

to be very amenable to the modeling of aeolian dunes.

Werner (1995) applied this approach, pioneered with

the aforementioned beach cusp model, to aeolian sand

transport and the development of various types of

dune patterns. This 3D model can simulate different

dune-forming conditions in terms of varying wind

directions, sediment flux and sand supply. The algo-

rithm consists of an elementary transport mechanism,

enforcement of the angle of repose (through avalanch-

ing) and deposition sinks in the shelter of relief

(‘shadow zones’). The model produces a range of

dune types observed in nature, including barchans,

transverse dunes, linear dunes and star dunes. Self-

organization of these dune patterns results from the

nonlinear dynamics between the local sand transport

rates, the migration rates of the evolving heaps of sand

and the shadow zones and avalanching mechanisms.

Werner also proposed a description of the self-organ-

ization process in terms of attractors, quantified in

phase-space by the number of dune crest terminations

in the dune pattern and the dune orientation relative to

the resultant (mean) sediment transport flux. A very

similar model developed by Nishimori et al. (1998) is

capable of simulating a range of dune types. Nishi-

mori et al., however, define the dune type attractors in

terms of wind directional variability and the amount

of sand available in the system. Most recently, a

modification of the Werner model by Momiji et al.

(2000) incorporates the effects of wind speedup on the

stoss slopes of developing dunes. This results in the

evolution of a more realistic cross-sectional profile of

the dunes with less steep windward slopes and it also

introduces an equilibrium limit to the size of the dunes

in the model space.

While these models provide an important tool for

understanding the formation of different dune types

and patterns in terms of self-organization, their sig-

nificance to coastal geomorphology is limited because

the critical element of vegetation is not included. The

interactions between vegetation and sediment trans-
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port are decisive components in the dynamics of

coastal dune landscapes, constituting an additional

set of complex feedback processes. The presence of

vegetation results in very different types of dune

patterns such as hummocks, foredunes, parabolic

dunes and blowouts, and it plays a crucial role even

in semiarid environments (Hesp, 1989; Carter et al.,

1990; Pye and Tsoar, 1990; Lancaster, 1995). The

following section of this paper introduces a substantial

extension of the Werner model, incorporating vegeta-

tion in the simulated landscape, to illustrate the

viability of self-organization approaches to the repro-

duction (or simulation) of coastal landform systems.

The modeling of vegetation dynamics of growth and

decline as a result of burial and erosion and its effects

on sediment transport allow for a more realistic

simulation of coastal dune landscape development.

5. Numerical simulation model

The simulation model is based on the original

algorithm of Werner (1995), also outlined in Momiji

et al. (2000). The principal feature of the algorithm is

that batches of sand are transported across a simulated

3D surface based on a stochastic procedure, whereby

the erosion, transport and deposition processes are

determined by chance. The model area consists of a

square cellular grid containing stacked slabs of sand

of a fixed height that constitute the topography. The

sand transport process is simulated by moving con-

secutive slabs across the grid. The edges of the grid

area are connected by periodic boundaries so that

exiting slabs are brought back into the model area

on the opposite side of the grid.

Simulation of the sand transport starts with a

random selection of a grid cell as an erosion site

and if that grid cell contains sand, the top slab is

removed and taken up for transport. The base of the

model area is considered to be a stratigraphic layer

below which further erosion is not possible. After

erosion, the slab is moved along a transport trajec-

tory, L, toward a new position on the grid (see Fig.

3). This transport trajectory represents the movement

of the sand by the wind. At the arrival site, deposition

is determined by chance, affected by conditions at the

Fig. 3. Schematic representation of the slab-covered grid, sand transport process and the shadow zone in the simulation algorithm. Shaded cells

are located in a shadow zone.
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designated grid cell. If the slab is determined to be

deposited, the stack of slabs at that grid cell is

increased by one; if the slab is determined not to

be deposited, the slab is moved one transport trajec-

tory further and a new deposition assessment takes

place. This procedure is repeated until the slab is

deposited.

In this algorithm, only the erosion and deposition

processes are stochastically controlled. The transport

trajectory consists of a vector with x and y compo-

nents that are parameters set at the beginning of the

simulation, representing the force and direction of the

wind. The erosion process is controlled by a proba-

bility of erosion at each grid cell. In the original

algorithm, this probability is set to 1, i.e. once a cell

is selected as an erosion site, a present slab is always

removed and transported. The deposition process is

controlled by a probability of deposition, p, based on

whether the deposition cell already contains slabs of

sand, ps, or not, pns (i.e. when the underlying hardrock

base is exposed).

Besides the main sand transport process, two con-

straints are simulated in the model: shadow zones and

avalanching. A shadow zone is the area in the lee side

of relief where wind flow has been slowed down

sufficiently to suppress any further transport of sand.

In the model, this is represented by a shelter zone

downwind of relief covering the area enclosed by an

angle of 15j (the shadow zone angle, b) to the

horizontal from the top of the relief (see Fig. 3), in

which deposition probability is 1 and erosion proba-

bility is 0. Avalanching is simulated to maintain the

angle of repose of loosely packed sand, which is

usually an angle of 33j to the horizontal. After

removal or addition of a slab of sand (erosion or

deposition), the model assesses whether this angle of

repose is exceeded and if so, moves neighboring slabs

down the steepest slope (in the case of erosion) to

reinforce this angle or moves the newly deposited slab

down the steepest slope until it reaches a grid cell

where it does not violate the angle of repose. Ava-

lanching is the only means of sideways sand transport

relative to the transport trajectory.

Time evolution in the model is produced by

repeating the slab movement process and is recorded

by the number of iterations, where one iteration

amounts to a quantity of consecutive slab transports

equal to the amount of grid cells in the model area.

This does not imply that every cell has been polled for

erosion. Various cells can be chosen more than once

during a single iteration, while other cells are skipped

because of the random site selection. Since slab height

is expressed as a ratio of the cell dimensions and

iterations are based on grid size, both the spatial and

temporal dimensions are undefined. As a result, the

model can be coupled to reality by defining one of the

dimensions and scaling others to the desired specifi-

cations.

In order to bring vegetation into the model environ-

ment, a number of alterations and extensions is

introduced to the original algorithm. Each grid cell

now contains two variables: (1) the number of sand

slabs at that site (as originally mentioned) and (2) an

additional variable describing the influence of vege-

tation at that site on the erosion and deposition

processes. This variable, referred to as ‘vegetation

effectiveness’, can be interpreted as a coverage den-

sity or a frontal area index (FAI) and has a value

between 0 and 1 (or between 0% and 100%). This

vegetation effectiveness affects the erosion and depo-

sition process, but not the intermediate transport

trajectory. It alters erosion probability at a cell in a

linear relationship whereby 0% effectiveness results in

an erosion probability of 1.0 (as in the original model)

and 100% effectiveness decreases the erosion proba-

bility to 0.0 (i.e. no erosion possible). Deposition

probability is affected in a similar linear manner, but

starting from the original ps or pns, where p rises to 1.0

at 100% vegetation effectiveness. This approach sim-

ulates the well-documented influences of vegetation

on the threshold shear velocity required to initiate and

sustain sand transport rates (Wasson and Nanninga,

1986; Raupach et al., 1993; Hagen and Armbrust,

1994; Lancaster and Baas, 1998). Although the exact

functional relationship is complex and most likely not

linear, the simplistic assumptions for simulating the

vegetation influences described above are deliberately

chosen to be consistent with the elementary modeling

of the sand transport in the basic algorithm.

Vegetation is not a static fixture in the landscape.

Considering species like marram grass (Ammophila

arenaria) in coastal dune environments, the vegeta-

tion responds to fresh sand input and burial by

growth and generally shows a more vital character

(Disraeli, 1984; Fay and Jeffrey, 1992; De Rooij-Van

der Goes et al., 1998; Maun, 1998). In the model, the
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development of the vegetation in the landscape is

controlled by simplistic ‘growth functions’ that relate

the erosion/deposition balance at each grid cell with

the increase or decrease of vegetation effectiveness.

This alteration of vegetation effectiveness is deter-

mined at the end of a vegetation cycle—defined as a

number of iterations—introducing a periodic time

scale in the model corresponding with the real-time

yearly cycle.

The growth functions used in this model can be

divided into: (1) dynamic vegetation with a positive

feedback to sand deposition, e.g. marram grass (A.

arenaria) and (2) conservative vegetation requiring a

more stable environment with less extreme erosion or

deposition, comparable to more shrubby vegetation

(see Fig. 4). Though the botanical and agricultural

literature contains many quantitative descriptions of

vegetation response to burial and erosion, extensive

qualitative data is much harder to compile, especially

since a multitude of factors may further control the

vegetation response under natural conditions, such as

nutrient availability, soil fungi, light penetration to

roots, salt spray, species competition, etc. (Van der

Putten, 1993; Yuan et al., 1993; De Rooij-Van der

Goes et al., 1995; Voesenek et al., 1998; Cheplick and

Demetri, 1999). Furthermore, the subsequent vegeta-

tion response by means of changes in leaf area, plant

height and coverage density cannot easily be related to

its effects on the shear velocity threshold and sand

transport rates. However, in order to remain consistent

with the simplicity of the basic transport algorithm,

the growth functions shown in Fig. 4 are deliberate

simplifications that can only be described in terms of

general characteristics, such as steepness (i.e. rate of

response to burial or erosion) and the location of the

peak (the optimum growth with respect to the erosion/

deposition balance).

The vegetation cycle introduces in the algorithm a

defined relation between the temporal scale (the

yearly or seasonal periodicity) and the spatial scales

(the erosion/deposition balance). As a result, transport

trajectories and growth functions must be related to a

specification of the cell size and slab height before-

hand, and the scale invariance of the model is lost.

To augment the above description of the model

algorithm, Fig. 5 depicts a flow scheme for one cycle

Fig. 4. Two different growth functions employed during simulations of vegetated dune landscapes. The black graph represents a marram-like

vegetation with positive response to burial; the gray graph represents shrub-like vegetation with limited tolerance to erosion and deposition.
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of erosion, transport and deposition of an individual

sand slab.

6. Results

Initial investigations were conducted to reproduce

the types of dune landscapes previously simulated by

Werner without the vegetation influences in the envi-

ronment. Fig. 6 shows an example of a barchan dune

field simulation, evolved from an initially random

undulating topography with no vegetation present.

Other bare sand dune types, such as transverse dunes,

seif dunes and star dunes, were successfully modeled

as well. Since this class of simulations has already

been described by Werner (1995) and Momiji et al.

(2000), this paper focuses on the modeling of dune

landscapes in the presence of vegetation. For a full

Fig. 5. Flow scheme for one erosion, transport and deposition cycle of an individual sand slab. Time evolution in the model is developed by

repetition of this process. Vegetation effectiveness is adjusted after a set number of iterations, based on the accumulated erosion/deposition

balance at each cell and the growth function employed.
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description of the simulations of bare sand dune

landscapes (such as transverse dunes and star dunes)

the reader is referred to the above articles.

During simulations with vegetation, the following

default parameter settings were used: angle of

repose = 30j; angle of shadow zone (b) = 15j; slab

height = 0.1; ps = 0.6; pns = 0.4. The difference

between ps and pns conveys the better saltation

rebound on hardrock as opposed to a sand surface

(Bagnold, 1941). Multidirectional wind regimes are

simulated using a cyclic series of differing transport

trajectories. These parameter settings agree with the

ones employed by both Werner (1995) and Momiji et

al. (2000) in their simulations. The growth functions

are evaluated at periods of 12 iterations, where one

iteration represents 1 month, and the evaluation event

roughly corresponds to the growth season (though the

algorithm does not capture true seasonality). Simulat-

ing a year per cycle, the cell dimensions are set to 1 m

(square) and subsequently, the standard slab height to

10 cm. The two principal growth functions employed

are described by two characteristics (see Fig. 4): (1)

the maximum of the function, defined by the optimal

deposition/erosion rate (x-coordinate) where the opti-

mal growth occurs ( y-value) and (2) the steepness of

the function defining the response rate of the vegeta-

tion species: the steeper the function, the faster the

vegetation responds to changes in the erosion/deposi-

tion balance. The dynamic growth function corre-

sponding to marram grass has its maximum at 0.6 m

of deposition per vegetation cycle, while the vegeta-

tion effectiveness declines when deposition rates fall

below 0.1 m/year. The conservative growth function

in contrast reaches its optimum growth at a zero

balance and declines when either erosion or deposi-

tion rates exceed 0.3 m/year.

In order to vary sand transport rates in the model,

the slab height, rather than the transport trajectories,

are adjusted using values of 0.2, 0.1, 0.05 to 0.02 m,

representing high to low transport conditions. As the

length of the transport trajectory was usually set to 5

m, this results in a transport rate of 0.8 m3/m/month

for a slab height of 0.1 m, a realistic figure for

moderate sand transport conditions in dune landscapes

(Bagnold, 1941; Goldsmith et al., 1990; Sherman and

Hotta, 1990; Arens, 1994). The simulations are ini-

tiated with a flat layer of sand overlying a hardrock

substratum covered with optimal vegetation (effec-

tiveness 100%). A circular patch of bare sand, repre-

senting a break in the vegetation, is situated near the

upwind border of the model area.

Fig. 7 shows the development of a dune landscape

containing a dynamic vegetation under high sand

transport conditions (slab height = 0.1) in one direc-

tion (left to right). The gray scale in the figure shows

the varying vegetation effectiveness throughout the

Fig. 6. Barchan dune field developed from initially flat, randomly undulated topography under unidirectional wind regime after 600 iterations. A

sequence of three transport trajectories was used (indicated by arrows): the main trajectory is 5 cells long, blowing for 50% of the time; two

oblique trajectories are 3.6 cells long at an angle of 33jwith main trajectory, blowing for 25% of the time each. Grid dimensions: 300� 300 cells.
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Fig. 7. (a–d) Development of a vegetated landscape out of an initial flat surface with one bare patch in the center. High transport conditions (slab height = 0.1, length = 5), from left to

right (direction indicated by arrow) and a dynamic vegetation. Height and distance in meters. The diagram shows the landscape after 5, 10, 20 and 50 years in (a), (b), (c) and (d),

respectively. Grid dimensions: 100� 100 cells.
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Fig. 8. (a–c) Development of a depositional lobe and sideways expansion out of an initial flat surface with a bare patch at the upwind border. High transport conditions (slab

height = 0.1, length = 5), from left to right (direction indicated by arrow) and a conservative vegetation. Height and distance in meters. From top-left to bottom shows landscape after

10, 20 and 50 years in (a), (b) and (c), respectively. Grid dimensions: 100� 100 cells.
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Fig. 9. (a, b) Landscape development out of an initial flat surface with a bare patch in the center, using 12 different transport trajectories within one vegetation cycle. These 12

trajectories attempt to simulate the sand transport regime in Dutch coastal dunes, with trajectories from various directions and various lengths. The used growth function is the

dynamic deposition-dependent vegetation. The top of the model area is north; major transport trajectories are from southwest, west, northwest and northeast; secondary trajectories are

from east, south and west. Notice that the height scale is exaggerated, relative to Figs. 4 and 5. From left to right shows landscape after 10 and 20 years in (a) and (b), respectively.

Grid dimensions: 100� 100 cells.
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landscape. The initial vegetated surface is quickly

activated throughout the model area and a complex

landscape develops, evolving from a hummocky top-

ography through a stage with crescentic ridges

towards more or less transverse ridges. While vege-

tation occupies the tops of the hummocks in the early

stages, it is mainly limited to the slip faces in the final

stage and does not appear to have any role in fixing

the sides of the developing dunes, the process con-

trolling parabolic dune development (Greeley and

Iversen, 1985, p. 173; Carter et al., 1990; Pye and

Tsoar, 1990, p. 201). The dynamic vegetation is not

capable of confining the dune development to the

initial bare patch; instead, the whole model area

rapidly changes into a dune landscape. Other simu-

lations using varying sand transport rates and growth

functions with small variations in tolerance produce

the same type of dune landscape development, with

only minor differences.

Using a conservative vegetation and high sand

transport conditions, a more parabolic shaped and

confined dune develops initially, shown in Fig. 8a,

under a unidirectional wind regime. Simultaneous

invasion of the upwind border of the bare patch by

the vegetation is also clearly visible. However, as the

development progresses and the main dune structure

migrates through the model area, the sideways expan-

sion of the dune is not restricted by the vegetation and

true trailing ridges do not develop. Instead, the dune

development extends throughout the model area and

eventually, the vegetation is restricted to the inter-

dune valleys (Fig. 8b and c).

Finally, a multidirectional wind regime was simu-

lated, representing a sequence of monthly average

sand transport rates and directions in the Dutch coastal

dunes throughout the year, with a dynamic vegetation

(Fig. 9; initial bare patch was situated in the middle of

the grid). This simulation shows striking differences

with the other two described above in that: (1) the area

surrounding the original bare patch develops strongly

while the rest of the model area initially remains

relatively flat, (2) the two main dune bodies develop

parallel to the mostly gentle prevailing westerly winds

(from left to right) and transverse to the oblique or

normal storm winds (northerly and southerly winds)

and (3) the vegetation is generally confined to the tops

of the dunes instead of in the troughs or on the slip

faces.

7. Discussion

The above modeling efforts have been merely

exploratory, but they have produced some tantalizing

results. They clearly show the potential of this

approach for simulating strikingly different and real-

istic dune patterns under the influence of vegetation

dynamics. The great contrast in appearance between

the landscapes of Figs. 7 and 8, for example, shows

the large impact of vegetation dynamics on the devel-

oping morphology. It illustrates how a change in

parameters (here the growth functions) results in a

fundamentally different landscape. The development

of the multidirectional wind regime simulation (Fig. 9)

is not as straightforward to interpret. After 20 model

years (Fig. 9b), the area surrounding the original bare

patch seems to develop into a hummocky landscape,

where the hummocks are anchored at their tops by the

vegetation. This type of landscape, however, would

not be expected with a deposition-dependent vegeta-

tion. Further simulations are required to investigate

thoroughly the sensitive dependence of the resulting

landscapes on the various modeling parameters, most

notably, sand transport conditions and vegetation

response. Such efforts may reveal certain attractor

landscapes or, alternatively, a chaotic behavior where

small changes in the parameters result in drastically

different morphology and vegetation patterns.

In terms of self-organization, the driving force in

the system is the transport of sand by wind—exter-

nally supplied energy—which creates elevation differ-

ences and hence, potential energy in the landscape

when sand collects in dune morphology. Chaotic

behavior is exhibited by the movement of individual

slabs of sand: their trajectories are unpredictable due

to the complex interactions between the erosion and

deposition rules and the morphology and vegetation in

the landscape. The self-organizing mechanism of dune

formation is the inverse proportionality between the

migration rate of heaps of sand and their size, which

allows smaller heaps of sand to catch up with larger

ones and to merge into dunes. The created potential

energy is dissipated through the process of avalanch-

ing which turns the potential energy into kinetic

energy and finally into frictional heat after coming

to rest at a lower elevation. In this context, the dunes

are considered dissipative structures in a far-from-

equilibrium situation (the equilibrium situation would
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be a flat stable plane with erosion and deposition

balancing in each cell). The incorporation of vegeta-

tion introduces additional dynamic feedback loops as

vegetation effectiveness modifies sand transport and

vice versa. It induces a second self-organizing mech-

anism in the form of positive and negative feedback

between deposition and erosion on the one hand and

vegetation effectiveness on the other.

Although the self-organization aspects of the

model algorithm are broadly understood, the interpre-

tation of the resulting landscapes in terms of attractors

is not as clear. In Werner’s original model, the

attractors are defined by the number of dune crest

terminations and the orientation of the crests to the

mean transport direction in the landscape. This

approach differentiates barchans, transverse dunes

and linear dunes, but does not identify seif dunes

and star dune patterns quite as well. A more tradi-

tional evaluation in terms of the wind directional

variability (RDP/DP ratio) and the equivalent sand

thickness (Wasson and Hyde, 1983) could provide a

better attractor quantification in this respect. This still

does not capture the vegetation patterns and effects in

the coastal dune simulations, however, and is not very

suitable for differentiating these vegetated landscapes.

At present, there exists no quantitative evaluation for

categorizing vegetated (coastal) dune landscapes,

most likely due to the fact that it is difficult to quantify

a vegetation pattern together with its spatial correla-

tion with the morphology.

The simulation algorithm requires improvement in

several areas. First, the joint presence of more than

one vegetation species in a grid cell must be accom-

modated, so that both dynamic and conservative

growth functions interact with the transport dynamics

simultaneously. In the last simulation effort described

above (for the Dutch coastal dunes, Fig. 9), for

example, the relatively stable flat areas farther from

the original bare patch would have been occupied by

conservative vegetation if both dynamic and conser-

vative growth functions had been jointly present in the

modeling environment. As a result, a more realistic

mosaic of vegetation patterns and morphology would

likely have been achieved. Second, the modification

of the Werner model proposed by Momiji et al. (2000)

in terms of a wind speed-up factor on stoss slopes will

provide for a more accurate development of the cross-

sectional profile of the dune morphology. The other

important future objective should be the development

of appropriate phase-space variables for the quantifi-

cation of possible attractor landscapes that incorporate

features of both morphology and vegetation.

Many further modifications are easily devised,

such as more complicated growth functions, interac-

tions between the trajectory and the intermediate cells,

varying shadow zones and so forth. Such refinements,

however, are not expected to significantly change the

fundamental characteristics of the self-organized dune

landscapes. More importantly, the strength of this

model and of every self-organization model is the

selection of only the most fundamental processes and

interactions acting in the landscape and simulating

these in the most simplistic manner. Attempts to

incorporate more detailed features of aerodynamics

and sand transport would obscure the fundamental

self-organization operations, introduce a myriad of

adjustable parameters and confound ultimate attractor

interpretation.

The implications of these exploratory modeling

efforts are of a mostly general nature. First, the

success of this model in generating relatively realistic

coastal dune landscapes demonstrates that it is cer-

tainly feasible to identify a specific set of fundamental

processes that capture the full dynamics on a land-

scape-scale level. Second, these fundamental pro-

cesses need not incorporate all the intricate details

present on a smaller scale. Secondary wind flow

patterns induced by relief, for example, are apparently

not essential to the development of a realistic dune

topography. Third, this type of approach provides a

connection between descriptions of a more geologic

or physiographic nature and small-scale deterministic

processes. For example, the model simulates the

interaction between a large-scale wind climatology

and the small-scale process of sand transport. Finally,

the implementation of self-organization concepts can

raise new or extended research questions. In this case,

for example, the issue of quantitative knowledge on

vegetation response to burial or erosion of sand takes

on new prominence.

8. Conclusion

Geomorphological research has been greatly

enriched by the concepts of chaos, fractals and self-
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organization developed over the past few decades.

Since nearly all geomorphic systems involve complex

nonlinear dynamics, they are inherently amenable to

these types of investigations. In coastal geomorphol-

ogy, this has inspired research ranging from wave

climates to shore profiles and beach cusps. The

description of a system in terms of self-organization

and attractors provides for an alternative analysis

powerful for its simplicity and transparency, consider-

ing only those processes fundamental to the system’s

evolution and excluding minor reductionist minutiae.

The potential of this approach is readily seen in the

dune simulations by Werner (1995), Nishimori et al.

(1998) and Momiji et al. (2000) that are able to

produce a range of recognized 3D dune patterns with-

out simulating complex aerodynamics and sand trans-

port processes. The introduction of vegetation in the

simulation model—as presented here—is able to cap-

ture an even wider variety of dune landscapes, with

only a minimum of interactions added to the algorithm.

Interpretation of these tantalizing results, however, is

presently frustrated by the lack of suitable quantitative

attractor descriptions and phase variables that include

the vegetation element in the landscape.
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