

Essential JavaScript &
jQuery Design Patterns

For Beginners
Authored By Addy Osmani

Copyright 2010 © Addy Osmani.

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 unported license.
You are free to remix, tweak, and build upon this work non-commercially, as long
as you credit Addy Osmani (the copyright holder) and license your new creations
under the identical terms. Any of the above conditions can be waived if you get
permission from the copyright holder. For any reuse or distribution, you must
make clear to others the license terms of this work. The best way to do this is with
a link to the license.

Foreword
I would like to thank Rebecca Murphy for inspiring me to open-source this mini-
book and release it for free download and distribution - making knowledge both
open and easily available is something we should all strive for where possible. I
would also like to extend my thanks to the very talented Alex Sexton who was
kind enough to be the technical reviewer for this publication. I hope that it helps
you learn more about design patterns and the usefulness of their application to
JavaScript code.

Introduction
At the beginning of this book I will focusing on a discussion about the importance
and history of design patterns in any programming language. If you're already
sold or are familiar with this history, feel free to the chapter 'What is a Pattern?'
to continue reading.

One the most important aspects of writing maintainable code is being able to
notice the recurring themes in that code and optimize them. This is an area where
knowledge of design patterns can prove invaluable.

Design patterns can be traced back to the early work of a civil engineer named
Christopher Alexander. He would often write publications about his experience in
solving design issues and how they related to buildings and towns. One day, it
occurred to Alexander that when used time and time again, certain design
constructs lead to a desired optimal effect.
In collaboration with Sarah Ishikawra and Murray Silverstein, Alexander
produced a pattern language that would help empower anyone wishing to design
and build at any scale,. This was published back in 1977 in a paper titled 'A
Pattern Language'.

Some 30 years ago, software engineers began to incorporate the principles
Alexander had written about into the first documentation about design patterns,
which was to be a guide for novice developers looking to improve their coding
skills. It's important to note that the concepts behind design patterns have
actually been around in the programming industry more than likely since it's
inception, albeit in a less formalized form.

One of the first and arguably most iconic formal works published on design
patterns in software engineering was a book in 1995 called 'Design Patterns:
Elements Of Reusable Object-Oriented Software'. This was written by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides - a group that became
known as the Gang of Four (or GoF for short).

The GoF's publication is considered quite instrumental to pushing the concept of
design patterns further in our field as it describes a number of development
techniques and pitfalls as well as providing twenty-three core Object-Oriented
design patterns frequently used around the world today. We will be covering
these patterns in more detail in the section ‘Categories of Design Patterns’.

In this book, we will take a look at a number of popular JavaScript design
patterns and explore why certain patterns may be more suitable for your projects
than others. Remember that patterns can be applied not just to vanilla
JavaScript, but also to abstracted libraries such as jQuery or Dojo as well. Before
we begin, let’s look at the exact definition of a ‘pattern’ in software design.

Contents

 What is a Pattern?
 'Pattern'-ity Testing, Proto-Patterns & The Rule Of Three
 The Structure Of A Design Pattern
 Writing Design Patterns
 Anti-Patterns
 Categories Of Design Pattern
 Design Patterns in jQuery

o Lazy Initialization
o Composite Pattern
o Wrapper Pattern
o Facade Pattern
o Observer Pattern
o Iterator Pattern
o Strategy Pattern
o Proxy Pattern
o Builder Pattern
o Prototype Patern
o Flyweight Pattern

 Design Patterns in JavaScript
o Creational Pattern
o Constructor Pattern
o Singleton Pattern
o Module Pattern
o Revealing Module Pattern
o Prototype Pattern
o DRY Pattern
o Facade Pattern
o Factory Pattern
o Decorator Pattern

 Conclusions
 References

What is a Pattern?
A pattern is a reusable solution that can be applied to commonly occurring
problems in software design - in our particular case, in writing JavaScript
applications. Another way of looking at patterns are as templates for how you
solve problems - ones which can be used in quite a few different situations.
To consider how useful a pattern may be, let us consider that if you were to write
a script where you said ‘for each item, sound an alert’, if sounding an alert was
complex in nature, it would always result in more maintainable code doing the
above over saying ‘do this for item 1’, ‘do this for item 2’, ‘do the same again for
item 3’, i.e. If the code performing the bulk of the work exists in fewer places it
becomes significantly easier to maintain.

You may ask why it’s important to understand patterns and be familiar with
them. Design patterns have three main benefits.

1. Patterns are proven solutions: They provide solid approaches to solving
issues in software development using proven solutions that reflect the experience
and insights the developers that helped define and improve them bring to the
pattern

2. Patterns can be easily re-used: A pattern usually reflects an out of the box
solution that can be adapted to suit your own needs. This feature makes them
quite robust.

3. Patterns can be expressive: When you look at a pattern there’s generally a set
structure and ‘vocabulary’ to the solution presented that can help express rather
large solutions quite elegantly.

Patterns are not an exact solution. It’s important that we remember the role of a
pattern is merely to provide us with a solution scheme. Patterns don’t solve all
design problems nor do they replace good software designers, however, they do
support them. Next we’ll take a look at some of the other advantages patterns can
offer us.

 Reusing patterns assists in preventing minor issues that can cause
major problems in the application development process. What this
means is that when your code relies more on proven patterns, you can afford to
spend less time worrying about your code architecture and more time focusing on
the quality of your overall solution. This is because patterns can encourage you to
code in a more structured and organized fashion so the need to refactor it for
cleanliness purposes in the future can be significantly decreased.

 Patterns can provide generalized solutions which are documented in
a fashion that doesn’t require them to be tied to a specific problem.
This generalized approach means that regardless of the application (and in many
cases the programming language) you are working with, design patterns can be
applied to improve the structure of your code.

 Certain patterns can actually decrease the overall file-size footprint of
your code by avoiding repetition. By encouraging developers to look more
closely at their solutions for areas where instant reductions in repetition can be
made, e.g. reducing the number of functions performing similar processes in
favor of a single generalized function, the overall size of your codebase can be
decreased.

 Patterns that are frequently used can be improved over time by harnessing
the collective experiences other developers using those patterns contribute back
to the design pattern community. In some cases this leads to the creation of
entirely new design patterns whilst in others it can lead to the provision of
improved guidelines on how specific patterns can be best used. This can ensure
that pattern-based solutions continue to become more robust than ad-hoc
solutions may be.

'Pattern'-ity Testing, Proto-
Patterns & The Rule Of Three
Remember that not every algorithm, best practice or solution represents what
might be considered a complete pattern. There may be a few key ingredients here
that are missing and the pattern community is generally weary of something
claiming to be one unless it has been heavily vetted. Even if something is
presented to us which *appears* to meet the criteria for a pattern, it should not
be considered one until it has undergone suitable periods of scrutiny and testing
by others.

Looking back upon the work by Alexander once more, he claims that a pattern
should both be a process and a ‘thing’. This definition is obtuse on purpose as he
follows by saying that the process should create the ‘thing’. This is a reason why
patterns generally focus on addressing a visually identifiable structure i.e you
should be able to visually depict (or draw) a picture representing the structure
that putting the pattern into practice results in.

In studying design patterns, you may come across the term ‘proto-pattern’ quite
frequently. What is this? Well, a pattern that has not yet been known to pass the
‘pattern’-ity tests is usually referred to as a proto-pattern. Proto-patterns may
result from the work of someone that has established a particular solution is
worthy of sharing with the community, but may not have yet had the opportunity
to have been vetted heavily due to it’s very young age.

Alternatively, the individual(s) sharing the pattern may not have the time or
interest of going through the ‘pattern’-ity process and might release a short
description of their proto-pattern instead. Brief descriptions of this type of
pattern are known as patlets.

The work involved in fully documenting a qualified pattern can be quite daunting.
Looking back at some of the earliest work in the field of design patterns, a pattern
may be considered ‘good’ if it does the following:

 Solves a particular problem - patterns are not supposed to just capture
principles or strategies. They need to capture solutions. This is one of the most
essential ingredients for a good pattern.

 The solution to this problem cannot be obvious - you can often find that
problem-solving techniques attempt to derive from well-known first principles.
The best design patterns usually provide solutions to problems indirectly - this is
considered a necessary approach for the most challenging problems related to
design.

 The concept described must have been proven - design patterns require
proof that they function as described and without this proof the design cannot be
seriously considered. If a pattern is highly speculative in nature, only the brave
may attempt to use it.

 It must describe a relationship - in some cases it may appear that a pattern
describes a type of module. Although an implementation may appear this way,
the official description of the pattern must describe much deeper system
structures and mechanisms that explain it’s relationship to code.

You wouldn’t be blamed for thinking that a proto-pattern that doesn’t meet the
guidelines for a complete pattern isn’t worth investigating, but this is far from the
truth. Many proto-patterns are actually quite good. I’m not saying that all proto-
patterns are worth looking at, but there are quite a few useful ones in the wild
that could assist you with future projects. Use best judgment with the above list
in mind and you’ll be fine in your selection process.

One of the additional requirements for a pattern to be valid is that they display
some recurring phenomenon. This is often something that can be qualified in at
least three key areas, referred to as the rule of three. To show recurrence using
this rule, one must demonstrate:

1. Fitness of purpose - how is the pattern considered successful?
2. Usefulness - why is the pattern considered successful?
3. Applicability - is the design worthy of being a pattern because it has wider

applicability? If so, this needs to be explained.When reviewing or defining a
pattern, it is important to keep the above in mind.

The Structure Of A Design
Pattern
When studying design patterns, you may wonder what teams that create them
have to put in their design pattern descriptions. Every pattern has to initially be
formulated in a form of a rule that establishes a relationship between a context,
a system of forces that arises in that context and a configuration that allows
these forces to resolve themselves in context.

I find that a lot of the information available out there about the structure of a
good pattern can be condensed down to something more easily digestible. With
this in mind, lets now take a look at a summary of the component elements for a
design pattern below.

A design pattern must have a:

 Pattern Name and a description
 Context Outline – the contexts in which the pattern is effective in responding

to the users needs.
 Problem Statement – a statement of the problem being addressed so we can

understand the intent of the pattern.
 Solution – a description of how the user’s problem is being solved in an

understandable list of steps and perceptions.
 Design – a description of the pattern’s design and in particular, the user’s

behavior in interacting with it
 Implementation – a guide to how the pattern would be implemented
 Illustrations – a visual representation of classes in the pattern (eg. a diagram))
 Examples – an implementation of the pattern in a minimal form
 Co-requisites – what other patterns may be needed to support use of the

pattern being described?
 Relations – what patterns does this pattern resemble? does it closely mimic any

others?
 Known usage – is the pattern being used in the ‘wild’?. If so, where and how?
 Discussions – the team or author’s thoughts on the exciting benefits of the

pattern

Design patterns are quite a powerful approach to getting all of the developers in
an organization or team on the same page when creating or maintaining
solutions. If you or your company ever consider working on your own pattern,
remember that although they may have a heavy initial cost in the planning and
write-up phases, the value returned from that investment can be quite worth it.
Always research thoroughly before working on new patterns however, as you may
find it more beneficial to use or build on top of existing proven patterns than
starting afresh.

Writing Design Patterns
Although this book is aimed at those new to design patterns, a fundamental
understanding of how a design pattern is written can offer you a number of useful
advantages. For starters, you can gain a deeper appreciation for the reason
behind a pattern being needed but can also learn how to tell if a pattern (or
proto-pattern) is up to scratch when reviewing it for your own needs.

Writing good patterns is a challenging task. Patterns not only need to provide a
substantial quantity of reference material for end-users (such as the items found
in the structure section above), but they also need to be able to almost tell a
‘story’ that describes the experience they are trying to convey. If you’ve already
read the previous section on ‘what’ a pattern is, you may think that this in itself
should help you identify patterns when you see them in the wild. This is actually
quite the opposite - you can’t always tell if a piece of code you’re inspecting
follows a pattern.

When looking at a body of code that you think may be using a pattern, you might
write down some of the aspects of the code that you believe falls under a
particular existing pattern, but it may not be a one at all. In many cases of
pattern-analysis you’ll find that you’re just looking at code that follows good
principles and design practices that could happen to overlap with the rules for a
pattern by accident. Remember - solutions in which neither interactions nor
defined rules appear are not patterns.

If you’re interested in venturing down the path of writing your own design
patterns I recommend learning from others who have already been through the
process and done it well. Spend time absorbing the information from a number of
different design pattern descriptions and books and take in what’s meaningful to
you - this will help you accomplish the goals you’ve got of designing the pattern
you want to achieve. You’ll probably also want to examine the structure and
semantics of existing patterns - this can be begun by examining the interactions
and context of the patterns you are interested in so you can identify the principles
that assist in organizing those patterns together in useful configurations.

Once you’ve exposed yourself to a wealth of information on pattern literature,
you may wish to begin your pattern using an existing format and see if you can
brainstorm new ideas for improving it or integrating your ideas in there. An
example of someone that did this quite recently is JavaScript developer Christian
Heilmann, who took an existing pattern called the module pattern and made
some fundamentally useful changes to it to create the revealing module pattern
(this is one of the patterns covered later in this book).

If you would like to try your hand at writing a design pattern (even if just for the
learning experience of going through the process), the tips I have for doing so
would be as follows:

 Bare in mind practicability: Ensure that your pattern describes proven

solutions to recurring problems rather than just speculative solutions which
haven’t been qualified.

 Ensure that you draw upon best practices: The design decisions you make
should be based on principles you derive from an understanding of best practices.

 Your design patterns should be transparent to the user: Design patterns
should be entirely transparent to any type of user-experience. They are primarily
there to serve the developers using them and should not force changes to
behaviour in the user-experience that would not be incurred without the use of a
pattern.

 Remember that originality is not key in pattern design: When writing a
pattern, do you not need to be the original discoverer of the solutions being
documented nor do you have to worry about your design overlapping with minor
pieces of other patterns. If your design is strong enough to have broad useful
applicability, it has a chance of being recognized as a proper pattern

 Know the differences between patterns and design: A design pattern
generally draws from proven best practice and serves as a model for a designer to
create a solution. The role of the pattern is to give designers guidance to make
the best design choices so they can cater to the needs of their users.

 Your pattern needs to have a strong set of examples: A good pattern
description needs to be followed by an equally strong set of examples
demonstrating the successful application of your pattern. To show broad usage,
examples that exhibit good design principles are ideal.

Pattern writing is a careful balance between creating a design that is general,
specific and above all, useful. Try to ensure that if writing a pattern you cover the
widest possible areas of application and you should be fine. I hope that this brief
introduction to writing patterns has given you some insights that will assist your
learning process for the next sections of this book.

Anti-Patterns
If we consider that a pattern represents a best practice, an anti-pattern represents
a lesson that has been learned. The term anti-patterns was coined in 1995 by
Andrew Koenig in the November C++ Report that year. It was inspired by the
Gang of Four's book Design Patterns, that developed the concept of design
patterns in the software field. In Koenig’s report, there are two notions of anti-
patterns that are presented. Anti-Patterns:

 Describe a bad solution to a particular problem which resulted in a bad situation
occurring

 Describe how to get out of said situation and how to go from there to a good
solution

On this topic, Alexander writes about the difficulties in achieving a good balance
between good design structure and good context:

“These notes are about the process of design; the process of inventing physical
things which display a new physical order, organization, form, in response to
function.…every design problem begins with an effort to achieve fitness between
two entities: the form in question and its context. The form is the solution to the
problem; the context defines the problem”.

While it’s quite important to be aware of design patterns, it can be equally
important to understand anti-patterns. Let us qualify the reason behind this.
When creating an application, a project’s life-cycle begins with construction
however once you’ve got the initial release done, it needs to be maintained. The
quality of a final solution will either be good or bad, depending on the level of
skill and time the team have invested in it. Here good and bad are considered in
context - a ‘perfect’ design may qualify as an anti-pattern if applied in the wrong
context.

The bigger challenges happen after an application has hit production and is ready
to go into maintenance mode. A developer working on such a system who hasn’t
worked on the application before may introduce a bad design into the project by
accident. If said bad practices are created as anti-patterns, they allow developers
a means to recognize these in advance so that they can avoid common mistakes
that can occur - this is parallel to the way in which design patterns provide us
with a way to recognize common techniques that are useful.

To summarize, an anti-pattern is a bad design that is worthy of documenting.
Examples of anti-patterns in JavaScript are the following:

 Polluting the namespace by defining a large number of variables in the global
context

 Passing strings rather than functions to either setTimeout or setInterval as this
triggers the use of eval() internally.

 Prototyping against the Object object (this is a particularly bad anti-pattern)
 Using JavaScript in an inline form as this is inflexible
 The use of document.write where native DOM alternatives such as

document.createElement are more appropriate. document.write has been grossly
misused over the years and has quite a few disadvantages including that if it's
executed after the page has been loaded it can actually overwrite the page you're
on, whilst document.createElement does not. You can see here for a live example
of this in action. It also doesn't work with XHTML which is another reason opting
for more DOM-friendly methods such as document.createElement is favorable.

Knowledge of anti-patterns is critical for success. Once you are able to recognize
such anti-patterns, you will be able to refactor your code to negate them so that
the overall quality of your solutions improves instantly.

Categories Of Design Pattern

A glossary from the well-known design book, Domain-Driven Terms, rightly
states that:
“A design pattern names, abstracts, and identifies the key
aspects of a common design structure that make it useful for
creating a reusable object-oriented design. The design pattern
identifies the participating classes and their instances, their
roles and collaborations, and the distribution of
responsibilities.

Each design pattern focuses on a particular object-oriented
design problem or issue. It describes when it applies, whether
or not in can be applied in view of other design constraints,
and the consequences and trade-offs of its use. Since we must
eventually implement our designs, a design pattern also
provides sample ... code to illustrate an implementation.

Although design patterns describe object-oriented designs,
they are based on practical solutions that have been
implemented in mainstream object-oriented programming
languages”

Design patterns can be broken down into a number of different categories. In this
section we’ll review three of these categories and briefly mention a few examples
of the patterns that fall into these categories before exploring specific ones in
more detail.

Creational Design Patterns

Creational design patterns focus on handling object creation mechanisms where
objects are created in a manner suitable for the situation you are working in. The
basic approach to object creation might otherwise lead to added complexity in a
project whilst creational patterns aim to solve this problem by controlling the
creation of such objects.

Some of the patterns that fall under this category are: Factory, Abstract,
Prototype, Singleton and Builder.

Structural Design Patterns

Structural patterns focus on the composition of classes and objects. Structural
‘class’ creation patterns use inheritance to compose interfaces whilst ‘object’
patterns define methods to create objects to obtain new functionality.

Patterns that fall under this category include: Decorator, Facade, Composite,
Adapter and Bridge

Behavioral Design Patterns
The main focus behind this category of patterns is the communication between a
class’s objects. By specifically targeting this problem, these patterns are able to
increase the flexibility in carrying out this communication.

Some behavioral patterns include: Iterator, Mediator, Observer and Visitor.

Summary Table Of Design Pattern
Categorization

In my early experiences of learning about design patterns, I personally found the
following table a very useful reminder of what a number of patterns has to offer -
it covers the 23 Design Patterns mentioned by the GoF. The original table was
summarized by Elyse Nielsen back in 2004 and I've modified it where necessary
to suit our discussion in this section of the book.

I recommending using this table as reference, but do remember that there are a
number of additional patterns that are not mentioned on this table but will be
discussed later in the book. That said, it's a great starting point for learning.

 Creational Based on the concept of creating an object.
 Class

 Factory Method This makes an instance of several derived classes based on
interfaced data or events.

 Object

 Abstract Factory Creates an instance of several families of classes without
detailing concrete classes.

 Builder Separates object construction from its representation,
always creates the same type of object.

 Prototype A fully initialized instance used for copying or cloning.

 Singleton A class with only a single instance with global access
points.

 Structural Based on the idea of building blocks of objects
 Class

 Adapter Match interfaces of different classes therefore classes can
work together despite incompatible interfaces

 Object

 Adapter Match interfaces of different classes therefore classes can
work together despite incompatible interfaces

 Bridge Separates an object's interface from its implementation so
the two can vary independently

 Composite A structure of simple and composite objects which makes
the total object more than just the sum of its parts.

 Decorator Dynamically add alternate processing to objects.

 Facade A single class that hides the complexity of an entire
subsystem.

 Flyweight A fine-grained instance used for efficient sharing of
information that is contained elsewhere.

 Proxy A place holder object representing the true object

 Behavioral Based on the way objects play and work together.
 Class

 Interpreter A way to include language elements in an application to
match the grammer of the intended language.

 Template
 Method

Creates the shell of an algorithm in a method, then defer
the exact steps to a subclass.

 Object

 Chain of
 Responsibility

A way of passing a request between a chain of objects to
find the object that can handle the request.

 Command
Encapsulate a command request as an object to enable,
logging and/or queuing of requests, and provides error-
handling for unhandled requests.

 Iterator Sequentially access the elements of a collection without
knowing the inner workings of the collection.

 Mediator
Defines simplified communication between classes to
prevent a group of classes from referring explicitly to each
other.

 Memento Capture an object's internal state to be able to restore it
later.

 Observer A way of notifying change to a number of classes to ensure
consistency between the classes.

 State Alter an object's behavior when its state changes

 Strategy Encapsulates an algorithm inside a class separating the
selection from the implementation

 Visitor Adds a new operation to a class without changing the class

Design Patterns In JavaScript

Next we’re going to take a look at 10 popular design patterns that I’ve personally
found very useful to apply in JavaScript applications over the years.

Note that there is no ‘ideal’ pattern to use from this selection as developers often
use best judgment when deciding on the pattern, which is the best ‘fit’ for their
needs.

Each pattern varies in complexity, however I have tried to keep my explanations
as simple as possible so that both beginners and intermediate developers can
benefit from the material.

The patterns we will be exploring are the:

 Creational Pattern
 Constructor Pattern
 Singleton Pattern
 Module Pattern
 Revealing Module Pattern
 Prototype Pattern
 DRY Pattern
 Facade Pattern
 Factory Pattern
 Decorator Pattern

The Creational Pattern

This pattern is the basis for a number of other patterns in this article and is
actually quite straightforward to understand. As you might guess, a creational
pattern deals with creating objects within an application. The most common way
of doing this in JavaScript is as follows:

 var newObject = new MyClass();

A lot of the time, you won’t have a reason to approach this in another way. You
just define your class and instantiate it later on when you need it. There are
however situations where this is neither an advantage nor a desired feature.

The Constructor Pattern

The phrase ‘constructor’ is familiar to most developers, however if you’re a
beginner it can be useful to review what a constructor is before we get into
talking about a pattern dedicated to it. Constructors are used to create specific
types of objects. This paradigm can be found in many programming languages,
including JavaScript. Some of the native constructors you may be familiar with
include Object and Array.

You’re also able to define custom constructors that define properties and
methods for your own types of objects.
Let’s look at a constructor for a car.

 function Car(model, year, miles){
 this.model = model;
 this.year = year;
 this.miles = miles;
 this.whatCar = function(){
 console.log(this.model);
 };
}

var civic = new Car("Honda Civic", 2009, 20000);
var mondeo = new Car("Ford Mondeo", 2010, 5000);

Side-note: Douglas Crockford recommends capitalizing your constructor
functions so that it is easier to distinguish between them and normal functions.

The Singleton Pattern

At its core, the singleton pattern can be implemented by creating a class with a
method that creates a new instance of the class if one doesn’t exist.

In the event of an instance already existing, it simply returns a reference to that
object. The singleton pattern is thus known because traditionally, it restricts
instantiation of a class to a single object.

The singleton doesn’t provide a way for code that doesn’t know about a previous
reference to the singleton to easily retrieve it - it is not the object or class that’s
returned by a singleton, it’s a structure.

Think of how closured variables aren’t actually closures - the function scope that
provides the closure is the closure.

So, where is the singleton pattern useful?. Well, it’s quite useful when exactly one
object is needed to coordinate patterns across the system. Here’s an example of
the singleton pattern being used:

 var SingletonTester = (function(){

 //args: an object containing arguments for the singleton
 function Singleton(args) {

 //set args variable to args passed or empty object if
none provided.
 var args = args || {};
 //set the name parameter
 this.name = 'SingletonTester';
 //set the value of pointX
 this.pointX = args.pointX || 6; //get parameter from
arguments or set default
 //set the value of pointY
 this.pointY = args.pointY || 10;

 }

 //this is our instance holder
 var instance;

 //this is an emulation of static variables and methods
 var _static = {
 name: 'SingletonTester',
 //This is a method for getting an instance

 //It returns a singleton instance of a singleton object
 getInstance: function (args){
 if (instance === undefined) {
 instance = new Singleton(args);
 }
 return instance;
 }
 };
 return _static;
})();

var singletonTest = SingletonTester.getInstance({pointX:
5});
console.log(singletonTest.pointX); // outputs 5

The Module Pattern

Let's now look at the popular module pattern. The module pattern was defined as
a way to provide both private and public encapsulation for the idea of JavaScript
'classes'. They work under the premise of a 'class' actually being defined as a
function (which we'll refer to as a class for simplicity sakes).

The parameters that you decide to use for this class are actually the parameters
for the constructor. Both the local variables and functions defined inside your
class become private members. The return method for your class (ie. still a
function) returns an object that contains your public methods and variables.

A piece of trivia is that the module pattern was originally formally defined by
Douglas Crockford (famous for his book 'JavaScript: The Good Parts, and more),
although it is likely that variations of this pattern were used long before this.
Another piece of trviai is that if you've ever played with Yahoo's YUI library, some
of it's features may appear quite familiar and the reason for this is that the
module pattern was a strong influence for YUI when creating their components.

So, you've seen why the singleton pattern can be useful, but why is the module
pattern a good choice?.

For starters, it's a lot cleaner for developers coming from an object-oriented
background than the idea of true encapsulation, at least from a JavaScript
perspective. Secondly, it supports private data - so, in the module pattern, public
parts of your code are able to touch the private parts, however the outside world
is unable to touch the class's private parts (no laughing!. oh, and thanks to David
Engfer for the joke).

The disadvantages of the module pattern is that as you access both public and
private members differently, when you wish to change visibility, you actually have
to make changes to each place the member was used.

You also can't access private members in methods that are added to the object at
a later point. That said, in many cases the module pattern is still quite useful and
when used correctly, certainly has the potential to improve the structure of your
application.

var someModule = (function(){

 //private attributes
 var privateVar = 5;

 //private methods
 var privateMethod = function(){
 return 'Private Test';
 };

 return {
 //public attributes
 publicVar : 10,
 //public methods
 publicMethod : function(){
 return ' Followed By Public Test ';
 },

 //let's access the private members
 getData : function(){
 return privateMethod() + this.publicMethod() +
privateVar;
 }
 }
 })(); //the parens here cause the anonymous function to
execute and return

someModule.getData();

The Revealing Module Pattern

Now you’re probably a little more familiar with what the Module pattern is. Let’s
take a look at a slightly improved version - Christian Heilmann’s Revealing
Module pattern, often described as a neat extension to a rather robust pattern.
The Revealing Module Pattern came about as Heilmann (now at Mozilla) was
frustrated with the fact that in you had to repeat the name of the main object
when you wanted to call one public method from another or access public
variables.

He also disliked the Module pattern’s requirement for having to switch to object
literal notation for the things you wished to make public. The result of his efforts
were an updated pattern where you would simply define all of your functions and
variables in the private scope and return an anonymous object at the end of the
module along with pointers to both the private variables and functions you
wished to reveal as public.

Once again, you’re probably wondering what the benefits of this approach are.
The RMP allows the syntax of your script to be fairly consistent - it also makes it
very clear at the end which of your functions and variables may be accessed
publicly, something that is quite useful. In addition, you are also able to reveal
private functions with more specific names if you wish.

An example of how to use the revealing module pattern can be found below:

/*
 The idea here is that you have private methods
 which you want to expose as public methods.

 What are are doing below is effectively defining
 a self-executing function and immediately returning
 the object.
 */
 var myRevealingModule = function(){

 var name = 'John Smith';
 var age = 40;

 function updatePerson(){
 name = 'John Smith Updated';
 }
 function setPerson () {
 name = 'John Smith Set';
 }
 function getPerson () {
 return name;
 }
 return{
 set: setPerson,
 get: getPerson
 }
}();

// Sample usage:
myRevealingModule.get();

The Prototype Pattern

The prototype pattern is based on the concept of prototypal inheritance where we
create objects which act as prototypes for other objects. The prototype object
itself is effectively used a blueprint for each object the constructor creates. If the
prototype of the constructor function used contains a property called 'name' for
example (as per the code sample below), then each object created by that same
constructor will also have this same property.

Looking at the definitions for the prototype pattern in existing literature non-
specific to JavaScript, you *may* find references to concepts outside the scope of
the language such as classes. The reality is that prototypal inheritance avoids
using classes altogether. There isn't a 'definition' object nor a core object in
theory. We're simply creating copies of existing functional objects.

One of the core benefits of using the prototype pattern is that we're working with
the strengths JavaScript has to offer natively rather than attempting to imitate
features of other languages (something a few design pattern implementations
do).

Not only is this an easy way to implement inheritance, but this also comes with a
performance boost as well. When defining a function in an object, they're all
created by reference (so all child objects point to the same function) instead of
creating their own individual copies.

For those interested, real prototypal inheritance, as defined in the ECMAScript 5
standard, requires the use of Object.create which is a recent newly native method.
Object.create creates an object which has a specified prototype and which
optionally contains specified properties (i.e Object.create(prototype,
optionalDescriptorObjects)).

We can also see this being demonstrated in the example below:

// No need for capitalization as it's not a constructor
var someCar = {
 drive: function() {};
 name: 'Mazda 3'
};

// Use Object.create to generate a new car
var anotherCar = Object.create(someCar);
anotherCar.name = 'Toyota Camry';

The DRY Pattern

Disclaimer: DRY is essentially a way of thinking and many patterns aim to
achieve a level of DRY-ness with their design. In this section we'll be covering
what it means for code to be DRY but also covering the DRY design pattern based
on these same concepts.

A challenge that developers writing large applications frequently have is writing
similar code multiple times. Sometimes this occurs because your script or
application may have multiple similar ways of performing something.

Repetitive code writing generally reduces productivity and leaves you open to
having to re-write code you’ve already written similar times before, thus leaving
you with less time to add in new functionality.

DRY (don’t repeat yourself) was created to simplify this - it’s based on the idea
that each part of your code should ideally only have one representation of each
piece of knowledge in it that applies to your system.

The key concept to take away here is that if you have code that performs a specific
task, you shouldn’t write that code multiple times through your applications or
scripts.

When DRY is applied successfully, the modification of any element in the system
doesn’t change other logically-unrelated elements. Elements in your code that are
logically related change uniformly and are thus kept in sync.

As other patterns covered display aspects of DRY-ness with JavaScript, let's take
a look at how to write DRY code using jQuery. Note that where jQuery is used,
you can easily substitute selections using vanilla JavaScript because jQuery is just
JavaScript at an abstracted level.

Non-DRY

/*Let's store some default values in an array*/
var defaultSettings = {};
defaultSettings['carModel'] = 'Mercedes';
defaultSettings['carYear] = 2010;
defaultSettings['carMiles'] = 5000;
defaultSettings['carTint'] = 'Metallic Blue';

Let's do something with this data if a checkbox is
clicked*/
$('.someCheckbox').click(function(){

 if (this.checked)
 {
 $('#input_carModel').val(activeSettings.carModel);
 $('#input_carYear').val(activeSettings.carYear);
 $('#input_carMiles').val(activeSettings.carMiles);
 $('#carTint').val(activeSettings.carTint);

 } else {

 $('#input_carModel').val('');
 $('#input_carYear').val('');
 $('#input_carMiles').val('');
 $('#input_carTint).val('');
 }
});

DRY

$('.someCheckbox').click(function(){
 var checked = this.checked;
 /*
 What are we repeating?
 1. input_ precedes each field name
 2. accessing the same array for settings
 3. repeating value resets

 What can we do?
 1. programmatically generate the field names
 2. access array by key
 3. merge this call using terse coding (ie. if
checked,
 set a value, otherwise don't)
 */
 $.each(['carModel', 'carYear', 'carMiles',
'carTint'], function(i,key){
 $('#input_' + v).val(checked ?
defaultSettings[key] : '');
 });
});

The Facade Pattern

This pattern both simplifies the interface of a class and it also decouples the class
from the code that utilizes it. Facades are often considered an essential part of a
developer’s pattern toolkit - they can make library utilities significantly easier to
understand by creating convenience routines that simplify the use of complex
systems.

An example of where the Facade pattern can be found is in the creation of
uniform JavaScript APIs which often seek to provide consistent experiences
across all browsers. Facades provide us with an ability to indirectly interact with
subsystems in a way that may be less prone to error than accessing the subsystem
directly.

Facade’s advantages include ease of use and often a small size-footprint in
implementing the pattern. It does however have some pitfalls - Facade is
inefficient when used consecutively and each time it’s called a new check must be
made to determine the features available for attaching event listeners. Let’s take a
look at the pattern in action:

This is an unoptimized code example but here we utilize Facade to simplify an
interface for attaching events.

We do this by creating a common method that can be used in one’s code which
does the task of checking for the existence of features so that it can provide a safe
and cross-browser compatible solution.

var addMyEvent = function(el,ev,fn){

 if(el.addEventListener){
 el.addEventListener(ev,fn, false);
 }else if(el.attachEvent){
 el.attachEvent('on'+ev, fn);
 } else{
 el['on' + ev] = fn;
 }

};

The Factory Pattern

Similar to other creational patterns, the Factory Pattern deals with the problem
of creating objects (which we can think of as ‘factory products’) without the need
to specify the exact class of object being created.

Specifically, the Factory Pattern suggests defining an interface for creating an
object where you allow the subclasses to decide which class to instantiate. This
pattern handles the problem by defining a completely separate method for the
creation of objects and which sub-classes are able to override so they can specify
the ‘type’ of factory product that will be created.

This can come in quite useful, in particular if the creation process involved is
quite complex. eg. if it strongly depends on the settings in configuration files.
You can often find factory methods in frameworks where the code for a library
may need to create objects of particular types which may be subclassed by scripts
using the frameworks.

In our example, let’s take the code used in the original Constructor pattern
example and see what this would look like were we to optimize it using the
Factory Pattern:

 var Car = (function() {
 var Car = function (model, year, miles){
 this.model = model;
 this.year = year;
 this.miles = miles;
 };
 return function (model, year, miles) {
 return new Car(model, year, miles);
 }
})();

var civic = new Car("Honda Civic", 2009, 20000);
var mondeo = new Car("Ford Mondeo", 2010, 5000);

The Decorator Pattern

Decorator patterns are an alternative to creating subclasses. This pattern can be
used to wrap objects within another object of the same interface and allows you
to both add behaviour to methods and also pass the method call to the original
object (ie the constructor of the decorator).

The decorator pattern is used when you need to keeping adding new functionality
to overridden methods. This can be achieved by stacking multiple decorators on
top of one another.

What is the main benefit of using a decorator pattern? Well, if we examine our
first definition, I mentioned that decorators are an alternative to subclassing.
When a script is being run, subclassing adds behaviour that affects all the
instances of the original class, whilst decorating does not.

It instead can add new behaviour for individual objects, which can be of benefit
depending on the application in question.

Let’s take a look at some code that implements the decorator pattern:

//The class we're going to decorate
function Macbook(){
 this.cost = function(){
 return 1000;
 };
}

function Memory(macbook){
 this.cost = function(){
 return macbook.cost() + 75;
 };
}

function BlurayDrive(macbook){
 this.cost = function(){
 return macbook.cost() + 300;
 };
}

function Insurance(macbook){
 this.cost = function(){
 return macbook.cost() + 250;
 };
}

// Sample usage
var myMacbook = new Insurance(new BlurayDrive(new
Memory(new Macbook())));
console.log(myMacbook.cost());

Design Patterns in jQuery

Now that we've taken a look at vanilla-JavaScript implementations of popular
design patterns, let's switch gears and find out what of these design patterns
might look like when implemented using jQuery. jQuery (as you may know) is
currently the most popular JavaScript library and provides a layer of 'sugar' on
top of regular JavaScript with a syntax that can be easier to understand at a
glance.
Before we dive into this section, it's important to remember that many vanilla-
JavaScript design patterns can be intermixed with jQuery when used correctly
because jQuery is still essentially JavaScript itself.

jQuery is an interesting topic to discuss in the realm of patterns because the
library actually uses a number of design patterns itself. What impresses me is
just how cleanly all of the patterns it uses have been implemented so that they
exist in harmony.
Let’s take a look at what some of these patterns are and how they are used.

Lazy Initialization

Lazy Initialization is a design pattern where you employ a tactic of delaying
any expensive processes (eg. the creation of objects) until the first instance they
are needed. An example of this is the .ready() function in jQuery that only
executes a function once the DOM has fully loaded.

$(document).ready(function(){
 $('#content').fadeIn();
 });

The Composite Pattern

The Composite Pattern describes a group of objects that can be treated in the
same way a single instance of an object can. Implementing this pattern allows
you to treat both individual objects and compositions in a uniform manner. In
jQuery, when we're accessing or performing actions on a single DOM element or
a group of DOM elements, we can treat both in a uniform manner. This is
demonstrated by the code sample below:

$('#someDiv').addClass('active'); // a single element
 $('div').addClass('active'); // a collection of
elements

The Wrapper Pattern

The Wrapper Pattern is a pattern which translates an interface for a class into
a compatible interface. Wrappers basically allow classes to function together
which normally couldn’t due to their incompatible interfaces. The wrapper
translates calls to it’s interface into calls to the original interface and the code
required to achieve this is usually quite minimal.

$('.container').css({
 opacity: .5 //apply opacity in modern browsers (eg.
Chrome, FireFox) but use filter for IE
 });

The Facade Pattern

The Facade Pattern is quite commonly used with OOP (Object-oriented
programming) where a facade is an object which provides a simpler interface to a
larger piece of code (eg. a class library). Facades can be frequently found across
the jQuery library and make methods both easier to use and understand, but also
more readable. The following are facades for jQuery’s $.ajax():

$.get();
$.post();
$.getJSON();
$.getScript();

The Observer pattern

The Observer pattern is where a subject (the object), keeps a list of it’s
dependants, which are known as observers, and notifies them automatically of
any changes in state. This is commonly done by calling one of their methods. The
Observer pattern can be considered a subset of PubSub (publish/subscribe
pattern).

//Here jQuery makes use of it's event system on top of DOM
events
 $('.button').click(function(){})
 $('.button').trigger('click', function(){})

The Iterator Pattern

The Iterator Pattern is a design pattern where iterators (objects that allow us
to traverse through all the elements of a collection) access the elements of an
aggregate object sequentially without needing to expose it’s underlying form.

Iterators encapsulate the internal structure of how that particular iteration occurs
- in the case of jQuery’s .each() iterator, you are actually able to use the
underlying code behind .each() to iterate through a collection, without needing to
see or understand the code working behind the scenes that's providing this
capability.

$.each(function(){});
$('.items').each(function(){});

An interesting side-note is that jQuery's 'each' method is backwards from the
ECMAScript 5 way of doing this but may change at some point in the future.

The Strategy Pattern

The Strategy Pattern is a pattern where a script may select a particular
algorithm at runtime. The purpose of this pattern is that it’s able to provide a way
to clearly define families of algorithms, encapsulate each as an object and make
them easily interchangeable.

You could say that the biggest benefit this pattern offers is that it allows
algorithms to vary independent of the clients that utilize them. An example of this
is where jQuery’s toggle() allows you to bind two or more handlers to the
matched elements, to be executed on alternate clicks.

The strategy pattern allows for alternative algorithms to be used independent of
the client internal to the function.

$('#container').toggle(function(){}, function(){});

The Proxy Pattern

The Proxy Pattern - a proxy is basically a class that functions as an interface to
something else. The proxy can be an interface to almost anything: a file, a
resource, an object in memory, something else that is difficult to duplicate etc.
jQuery's .proxy() function takes as input a function and returns a new one that
will always have a particular context.

This is parallel to the idea of providing an interface as per the proxy pattern.

$.proxy(function(){}, obj);

The Builder Pattern

The Builder Pattern’s main concept is that it abstracts the steps involved in
creating objects so that different implementations of these steps have the ability
to construct different representations of objects.

Below is an example of how jQuery utilizes this pattern to allow an element which
you may wish to append to the document body to be constructed using a string
definition.

$('< div class= "foo"> bar < /div>');

The Prototype Pattern

The Prototype Pattern is used when the objects you wish to create are
determined by a prototypal instance that is cloned to produce the new objects.
Essentially this pattern is used to avoid creating a new object in a standard
manner when this process may be expensive or overly complex. In the following
code sample which extends the jQuery.fn object for a minimal plugin,
underlying prototypal code makes this possible:

$.fn.plugin = function(){}
$('#container').plugin();

The Flyweight Pattern

The Flyweight Pattern is a design pattern where an object attempts to
minimize the amount of memory used by sharing as much information as
possible with other objects that are similar in nature. It’s a way to utilize objects
in large numbers when a simple repeated representation may use an amount of
memory deemed unacceptable. There are often aspects of an object state that
can be shared and it’s commonplace that these be stored in external data-
structures that are passed to the flyweight objects temporarily when needed.
// The userConfig is shared here:

 $.fn.plugin = function(userConfig){
 userConfig = $.extend({
 content: 'Hello user!'
 }, userConfig);
 return this.html(useConfig.content);
 });

A side-note here is that prototypal inheritance in JavaScript uses differential
inheritance to only define objects once in a prototype chain until they are
overridden. This makes it easier to save memory.

Conclusions

That’s it for this introduction to the world of design patterns in JavaScript &
jQuery– I hope you’ve found it useful. The contents of this book are in no way an
extensive look at the field of patterns, but should give you enough information to
get started using the patterns covered in your day-to-day projects.

Design patterns make it easier to reuse successful designs and architectures. It’s
important for every developer to be aware of design patterns but it’s also essential
to know how and when to use them. Implementing the right patterns intelligently
can be worth the effort but the opposite is also true. A badly implementing
pattern can yield little benefit to a project.

Also bare in mind that it’s not the number of patterns you implement that’s
important but how you choose to implement them. For example, don’t choose a
pattern just for the sake of using ‘one’ but rather try understanding the pros and
cons of what particular patterns have to offer and make a judgement based on it’s
fitness for your application.

If I’ve encouraged your interest in this area further and you would like to learn
more about design patterns, there are a number of excellent titles on this area
available for generic software development but also those that cover specific
languages.

For JavaScript developers, I recommend checking out two books:

1. ‘Pro JavaScript Design Patterns’ by Ross Harmes and Dustin Diaz.
2. 'JavaScript Patterns' by Stoyan Stefanov

If you’ve managed to absorb most of the information in my mini-book, I think
you’ll find reading these the next logical step in your learning process (beyond
trying out some pattern examples for yourself of course) :)

Thanks for reading Essential JavaScript & jQuery Design Patterns. For more
free learning material on JavaScript, jQuery and User-Interface Design, check out
my official site over at http://addyosmani.com for my latest educational
resources.

References
1. Design Principles and Design Patterns - Robert C

Martinhttp://www.objectmentor.com/resources/articles/Principles_and_Patter
ns.pdf

2. Ralph Johnson - Special Issue of ACM On Patterns and Pattern Languages -
http://www.cs.wustl.edu/~schmidt/CACM-editorial.html

3. Hillside Engineering Design Patterns Library - http://hillside.net/patterns/
4. Pro JavaScript Design Patterns - Ross Harmes and Dustin Diaz

http://jsdesignpatterns.com/
5. Design Pattern Definitions - http://en.wikipedia.org/wiki/Design_Patterns
6. Patterns and Software Terminology

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
7. Reap the benefits of Design Patterns - Jeff Juday

http://articles.techrepublic.com.com/5100-10878_11-5173591.html
8. JavaScript Design Patterns - Subramanyan Guhan

http://www.slideshare.net/rmsguhan/javascript-design-patterns
9. What Are Design Patterns and Do I Need Them? - James Moaoriello

http://www.developer.com/design/article.php/1474561
10. Software Design Patterns - Alex Barnett

http://alexbarnett.net/blog/archive/2007/07/20/software-design-patterns.aspx
11. Evaluating Software Design Patterns - Gunni Rode http://www.rode.dk/thesis/
12. SourceMaking Design Patterns http://sourcemaking.com/design_patterns
13. The Singleton - Prototyp.ical

http://prototyp.ical.ly/index.php/2007/03/01/javascript-design-patterns-1-the-
singleton/

14. JavaScript Patterns - Stoyan Stevanov -
http://www.slideshare.net/stoyan/javascript-patterns

15. Stack Overflow - Design Pattern Implementations in JavaScript (discussion)
http://stackoverflow.com/questions/24642/what-are-some-examples-of-design-
pattern-implementations-using-javascript

16. The Elements of a Design Pattern - Jared Spool
http://www.uie.com/articles/elements_of_a_design_pattern/

17. Stack Overflow - Examples of Practical JS Design Patterns (discussion)
http://stackoverflow.com/questions/3722820/examples-of-practical-javascript-
object-oriented-design-patterns

18. Design Patterns in JavaScript Part 1 - Nicholas Zakkas
http://www.webreference.com/programming/javascript/ncz/column5/

19. Stack Overflow - Design Patterns in jQuery
http://stackoverflow.com/questions/3631039/design-patterns-used-in-the-
jquery-library

20. Classifying Design Patterns By AntiClue - Elyse Neilson
http://www.anticlue.net/archives/000198.htm

21. Design Patterns, Pattern Languages and Frameworks - Douglas Schmidt
http://www.cs.wustl.edu/~schmidt/patterns.html

22. Show Love To The Module Pattern - Christian Heilmann http://www.wait-till-
i.com/2007/07/24/show-love-to-the-module-pattern/

23. JavaScript Design Patterns - Mike G.
http://www.lovemikeg.com/2010/09/29/javascript-design-patterns/

24. Software Designs Made Simple - Anoop Mashudanan
http://www.scribd.com/doc/16352479/Software-Design-Patterns-Made-Simple

25. JavaScript Design Patterns - Klaus Komenda
http://www.klauskomenda.com/code/javascript-programming-patterns/

26. Design Patterns Explained - http://c2.com/cgi/wiki?DesignPatterns
27. Working with GoF’s Design Patterns In JavaScript

http://aspalliance.com/1782_Working_with_GoFs_Design_Patterns_in_JavaS
cript_Programming.all

28. Design Patterns by Gamma, Helm supplement
http://exciton.cs.rice.edu/javaresources/DesignPatterns/

Essential JavaScript & jQuery Design Patterns. Copyright Addy Osmani 2010.

